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Abstract: In this work, an application of the modified minsadbed (minimizing sum of absolute
differences between deviations) approach for a fuzzy environment is given. This type of
regression was used for a statistical model with two real parameters and experimental
observations which implies real numbers (see Arthanary and Dodge?). We develop minsadbed
to minsadbesd (minimizing sum of absolute differences between squared deviations) which is
more suitable for our model on vague sets. The models on fuzzy sets are described by Ming,
Friedman and Kandel®; these authors estimate the parameters pre-eminently using least
squares. We make an attempt for another method, as in the following writing.
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1. The minsadbesd approach

Consider the model composed by n observations X;,Y; which are put in the forms

[ﬁ(r),x_i(r)], [\ﬁ(r),\?i(r)] where ﬁ(r), Xi(r), ﬁ(r), Y_,(r) are real functions defined on
closed interval [O,l] (see Goetschel&Voxman*, Ming, Friedman and Kandel °). The model is

approximately  described by a regression line given by the equation

Y =a+bX ,(a, b) € R x R*. We put the additional conditions that the line pass through the
point M of form (M X (r), My (r)), where &(r) = M_X(r) =const.€ R,

&(r) = M, (r) =const.e R. Thus we have the initial relation My =a+bMy . For the

inputs X;,i =1..,n the distance between an observed value Y, and the corresponding

theoretical value Y; = a + bX; is®:
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D, = \/H(amx( )zdr+j(a+bx( )Zdr] if b > 0

0

\/H a+bX;( )zdf+f(a+bx( )zdr] if b<0.

0

Case1: b > 0.
In this case we solve the problem under the assumption that b > 0.
The minsadbesd algorithm lead us to solve the problem

o 20t -0i] 0

or

o 2

i<j

1

_[(a+bﬁ( )zdr+j(a+bx Y,(r)f dr -

0 0

1(a+bX )zdr a+bX ~Y,(nfdr| (1.2)

0

Forall i < j, i, =L..,n, we make the substitutions:

{pi(r)ﬁi(r)—wlx(r) {a(r)Ji(r)_Mx(r)
a(r) = ) Q) =Yi()- M ()
{p,-(r)=xj(r)—Mx r) {Pj(r)z_j(r)—M_xr)

j ' Qj(r):Y_j() .

Thus (1.2) is equivalent to

1

@20+ Q70 - a() - Q (k| (1.3
0

or

ggZ‘aub2+b b+cy| (1.4)

where
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Let (b) = ‘aijbz +byb + ¢yl . For function a;b>+bb+c;, we have

The sign of the discriminant is unknown. We have four cases which depends on
signs of @, A;; ; consequently, the graph of f; (b) has one of the forms shown in Fig. 1-4.

Case 1.1.
The “easy” case appears when all the discriminants are negative,

namely A < 0,Vi = 1,...,n. In this situation the functions have the forms shown in Fig. 3 or

ij =
Fig. 4.
The problem (1.4) is equivalent to

grenR?[Abz +Bb+C|= E:%{?[(;\a”\]bz +Bb + c} (1.5)

where B = Zi ‘bij‘ ( this writing means that some of the terms are positively and the

i<j

others are negatively, depending on the concrete signs of ;) and C = z + ‘Cij‘ .

i<j

The unique minimizing point for the function u(b) = Ab? + Bb + C (see also Fig. 5)

is
B
b = ———7—.
ZZ‘aij‘
i<j
Case 1.2.

Aj; have random signs.

The graph of the continuous function Z fij(b) is composed from small pieces
L
which are parts from the functions given by the equations Db? + Eb + F where D, E,F are
, E= Zi‘bij , F= Zi‘cij‘ (see Fig. 6).
i<j '

i<j

real numbers with general form D = Zi‘aij

i<j

C.:
We consider the following sets: S, = {—l/ for all i < j which gives a; = 0,b; = 0},

). . ’ IJ
ij
2

_ 5 L/ for all i < j which gives a; = 0,b} —4a;c; > 0,
a

ij

S, = —i/for al D=#0,D>0;.
2D

3
Thus the feasible set is S = USi and the problem (1.4) becomes Ignsnz fij(b)
DY

i=1

which is relatively easy to settle, as in Section 2.
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Case 2: b < 0.

k§mRnR Z‘dz dz‘ (1.6)

gives

o 2
I(a+bx( )Zdr— (a+bX -Y,( )Zdr

0 0

j.a+bX )2dr+'[(a+bx )zdr—

0

(1.7)

The problem (1.7) is equivalent with

[ (62() + P2(r) p,"(1)- P2 ()b -

0

mln Z
beR™

i<j

- 20{ (p)0,F) + R )~ By (110, (r) Py (g, ) +

¥ j(qiz(r) +Q7(r)—a;*(r) - Q/*(r)jdr

0

(1.8)

which becomes

man‘aub +b'”b+c‘ (1.9)

beR”
if
1
= 2] (()Qu(r) + R(F)ay (r) = p;(r)Q;(r) = Py () (r)hir
0
We denote g ‘a b + D" b + ;. For function a;b* +b'; b + ¢;;, we have
Ay = b4 ¢
Case 2.1.

First, we consider the case A'“ <0,Vi=1,..,n.

Thus the graph of g;; (b) has one of the two forms shown in Fig. 3 and Fig. 4.

Then the problem (1.9) is equivalent with

min[Ab? + B'b + C'] = mlnH ‘aUsz +B'b+ c'] (1.10)

beR®

C'= 2 k-

i<j

where B'= + ‘b'
i<j

The unique minimizing point for function [Ab2 +B'b + C'] is b = ———=+—.
ZZ ‘aij‘
i<j

The approach is the same as in first case but with other coefficients.
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In both situation, a is obtained from the condition that the line pass through the
initial fixed point.

Case 2.2.
All the comments stored in case 1.2 keeps their validity.
For D'= Zi ‘aij , E'= Zi ‘b'ij , F'= Zi ‘Cij‘ we have
i<j i<j i<j

S, = {‘ by £,/b%—4a;c;

5 L2/ for all i < j which gives a; = 0,b —4a;c; > 0},
a

C.:
S = {—i/ for all i < j which gives a; = 0,b'; # 0}:

ij
Sy = {—%/ for all D'= 0,D'> 0} and (1.4) is equivalent with

min Zgij(b)= mingij(b) (1.17)

beSUSHUSY ic) i<)

Figure 1. The graph of f; (b) (green) if A; >0 and a; >0
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Figure 3. The graph of f; (b) if Aj <0 and a; <0
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Figure 4. The graph of f; (b) if Aj <0 and g; >0

Figure 5. The graphs of  the functions f;; (b), z f; (b) when

i<j

<0,Ay<0,Vi, ] = 1,_n,i < j; the surface bounded by the graph of Z f; (b) is colored

i<j

in gray
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Figure 6. The graph of the function Z f; (b) when Ay, A% (i, j =L...,ni < j) have

i<j
random signs

2. Example

We test the method for fixed point M = (1,2) and the fuzzy data:

X, =[B-r3+r]; Y, =[5+r6+r]
X, =[4r,5r]; Y, = [4+ 71,10 + 1]
Xy=[3+r7-r];Y, =[or8+r]

Then
! P P oF Q
1 2—-r 2+7r 3+r 4+r
2 —1+4r —1+5r 2+7r 8+r
3 | 243r 6-r -2409r 6+r
1 1 1 1
i | [(pz+R2)ar | [(@2+Qe)ar | [(pa+RQr | [(pQ+P gl
0 0 0 0
1 9.66 32.66 16.50 15.5
2 0.58 108.66 21.00 20.00
3 43.33 55.33 46.66 36.00
and

fio(b) = |- 3b% — 9b + 76

, 91,(b) =|-3b% ~9b + 76
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f13(b) =

. 05(b) = [33.66b% — 41b + 22.66|
»(b) = [36.66b?

. U53(b) = [36.66b2 — 32b — 53.33.

Case 1: We search the minimizing points for the function Z fi (b)

i,j=13
i<j

Accordingly to the facts proved in the preceding chapters, namely Section 1, case
1.2, the set of feasible points is S =S, = {— 6.75;—0.69;0.53;1.25;2.09;3.75} ( notice: for this

example we obtain S, = S; = ¢) and the minimum is attained for b = b" =2.09 > 0. The
complete solution is (a,b) = (a*, b*) = (- 0.9;2.09).

Case 2: We search the minimizing point for z 9jj (b) Using the theoretical results

i,j=1,3
i<j

obtained in Section 1, case 2.2, the set of feasible pointsis S'= {— 6.75;—0.84;1.71;3.75} and
the minimum is attained in b™ =1.71 > 0. This point don’t fulfill the restriction concerning

the sign of parameter b. From the appearance of the decreasing function z 9ij (b) on

i,j=1,3
i<j

(— 00,1.71) we conclude that the estimators for b < 0 are the real numbers
BeV, (0) N (— oo,O) where V, (O) = (— g, 8) and & depends by the desired threshold of error.

If B1,B, € V,(0)n (- 0,0),
Atlast, we have ) f;(2.09) = 87.44 and 151.99 = " g;(0) < »_ g;(B) for all

i,j_:1,73 i,j=1,3 i,j=1,3
i<] I<j I<j
B eV.(0)n (- ,0). Thus Z (2.09) < Z gIJ ) and the final solution for this problem is

i,j=13 i,j=1,3
i<j i<j

|[32| then B, is a better estimator.

(a,b) = (- 0.9;2.09).

3. Conclusions

From the preceding theoretical facts and numerical example we obtain the
following conclusions:
1) For b* > 0, b** <0 , we evaluate Z‘Di2 - Dﬂ and Z‘diz - df‘
i<j i<j

If Z:‘Di2 - DJZ‘ < Z‘diz - df‘ thus the solution is b*.

i<j i<j

If Z:‘Di2 - DJZ‘ > Z‘diz - df‘ thus the solution is b**.

i<j i<j
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2) For b* >0, b*™ >0 or b* <0, b™ <0 it is necessary to make small supplementary

calculations which implies the special properties of the functions Z f; (b) , Z gjj (b) , as we
i,j=13 i,j=13
i<j i<j

shown in Section 2.
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