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Abstract 

The aim of this research was to approximate the Poisson distribution by the COM-Poisson as a way 

to induce equi-dispersion in the model and hence, make some inferences by taking advantage of 

the close-form moments of the Poisson distribution. This was achieved by relating the approximate 

moments of the COM-Poisson distribution to that of the Poisson distribution to determine the 

relationship between their respective parameters. The estimates of the Poisson parameters were 

found to induce equi-distribution to the observed data. The advantage of the estimation is that 

closed-form moments of the Poisson can then be used to make inferences on the data. It is 

recommended that the COM-Poisson distribution should be applied to induce equi-distribution 

when the data does not conform to the Poisson distribution. 
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Introduction 

 

When counting items that arise independently of one another at random in space 

(or time), the Poisson distribution may be appropriate. If the items (for example, insects, le-

sions on a leaf, or weeds) occur at a constant average rate of θ per unit area, and if a large 

number of unit areas are counted, the actual number of items in each unit being X, then the 

distribution of X follows the Poisson distribution. If the rate per unit area θ does not remain 

constant over a complete population of units being studied then the Poisson distribution will 

not be a suitable model. Another case where it does not work is when the items being 

counted are not fully independent of one another but tend to arise in groups. Theoretically, 

the mean and variance of the Poisson are equal, so we can say that the Poisson distribution 

has equal dispersion or equi-dispersion. According to Sellers, Borle and Shmueli (2012), this 

is hardly the case in real life count data. This has led to the popularization of the negative 
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binomial distribution which can capture over-dispersion. Feng-Chang and Bo-Cheng (2010) 

declare that for over dispersed-data, the negative binomial can be used, and, further, that 

the generalized Poisson regression model is one of the few distributions that can be used for 

both under- and over-dispersed count data. Berk and MacDonald (2008) conclude that if 

apparent over-dispersion results from specification errors in the systematic part of the Pois-

son model, resorting to the negative binomial distribution does not help. It can make things 

worse by giving a false sense of security when the fundamental errors in the model remain. 

It is ideal to avoid over-dispersion or under-dispersion in count data.  Hinde and 

Demetrio (1998) discuss the consequences of over-dispersion. They state that, firstly, the 

standard errors obtained from the model will not be correct and may be seriously 

underestimated and, consequently, that we may incorrectly assess the significance of 

individual regression parameters. Also, changes in deviance associated with model terms will 

be too large and this will lead to the selection of overly complex models. Finally, our 

interpretation of the model will be incorrect and any predictions will be too precise. 

Cameron and Trivedi (2001) state that over-dispersed and under-dispersed data will lead to 

the standard errors of model parameters being inconsistent. 

Of particular focus in this study is the Conway-Maxwell-Poisson (COM-Poisson). 

The Conway-Maxwell-Poisson (COM-Poisson) model is another such technique for such 

count data. The distribution was first introduced in 1962 by Richard W. Conway and William 

L. Maxwell, but only recently have the statistical and probabilistic properties of the distribu-

tion been published by Shmueli, Minka, Kadane, Borle and Boatwright (2005). So it can be 

said to be a relatively new distribution. The COM-Poisson distribution adds a new parameter 

𝜈 which governs the rate of decay of successive probability ratios (Shmueli et al, 2005). Since 

then, further advancements on the distribution have been produced. Sellers and Shmueli 

(2010) used COM-Poisson regression to predict censored count data. Lord, Guikema and 

Geedipally (2008) applied the generalized COM-Poisson linear model to the analysis of mo-

tor vehicle crashes using a flexible GLM that could model both under-dispersed and over-

dispersed data sets. Rodrigues et al (2009) developed a flexible cure rate survival model by 

assuming that the number of competing causes of the event of interest follows a COM-

Poisson distribution. 

The assumption of equi-distribution of a Poisson data does not hold in most exper-

imental situations. To circumvent this problem, the COM-Poisson probability model has been 

proposed because of its assumed ability to remedy the violation of equi-distribution. A major 

hurdle in its use is the lack of a closed form moment generating function for which the exact 

moments could be obtained (Shmueli et al, 2005). This problem also arises in deriving some 

closed form estimates of the model parameters (for example, MLEs) as well as deriving some 

inferential results from the model, such as, best critical region of a test and tests of hypothe-

ses. An attempt is therefore made to relate the COM-Poisson parameters to the Poisson pa-

rameters by using the approximate moments of the COM-Poisson in order to induce equi-

distribution to some count data. 

 

Methodology  

 

Poisson Model 

The Poisson distribution is a discrete probability distribution used to describe the 

number of occurrences in a given small interval of time and/or space if these events occur 
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with a known average rate and the occurrence of one event is independent of the occur-

rence of others. 

The probability mass function of the Poisson distribution is: 

𝑃(𝑋 = 𝑥) =
𝜃𝑥𝑒−𝜃

𝑥!
                       𝑥 = 0,1,2, … ,    𝜃 > 0                       (1) 

The mean and variance of the Poisson distribution is given by: 

𝐸(𝑋) = 𝑉𝑎𝑟(𝑋) = 𝜃                                                                                     (2)   

The limitation of the Poisson model is that it requires the variance to be equal to 

the mean which, as was stated earlier, is hardly satisfied in real life count data. 

 

COM-Poisson Model 

The COM-Poisson probability function according to Shmueli et al (2005) is given 

as: 

𝑃(𝑋 = 𝑥) =
𝜆𝑥

(𝑥!)𝜈
1

𝑍(𝜆, 𝜈)
                           𝜆 > 0, 𝜈 ≥ 0    𝑥 = 0,1,2, …,         (3)            

where  𝑍(𝜆, 𝜈) = ∑
𝜆𝑗

(𝑗!)𝜈
∞
𝑗=0                       𝜆 > 0, 𝜈 ≥ 0                                                    (4) 

This satisfies the conditions for a probability function. The formulation allows for a 

non-linear decrease in the ratios of successive probabilities in the form: 

𝑃(𝑋 = 𝑥 − 1)

𝑃(𝑋 = 𝑥)
=

𝑥𝜈

𝜆
                                                                                           (5) 

𝜐 is the shape parameter of the COM-Poisson distribution. The condition 𝜐 >1 cor-

responds to under-dispersed data, 𝜐 <1 to over-dispersed data, and 𝜐 =1 to equi-dispersed 

(Poisson) data. The series 
𝜆𝑗

(𝑗!)𝜈
 converges for any 𝜆 > 0 and 𝜈 > 0 as the ratio of the subse-

quent terms of the series 
𝜆

𝑗𝜐
 tends to 0 as 𝑗 → ∞. 

The first central moment of the COM-Poisson distribution is given by: 

𝐸(𝑋) =
𝜕𝑙𝑜𝑔𝑍

𝜕𝑙𝑜𝑔𝜆
                                                                                                    (6) 

The second central moment is given by: 

𝑉𝑎𝑟(𝑋) =
𝜕2𝑙𝑜𝑔𝑍

𝜕𝑙𝑜𝑔2𝜆
                                                                                              (7) 

The COM-Poisson distribution does not have a closed-form expression for its mo-

ments in terms of the parameters𝜆 and 𝜈. By using an asymptotic expression for Z in (4) the 

mean and variance can be approximated (Shmueli et al, 2005) in the form: 

𝐸(𝑋) ≈ 𝜆1 𝜐⁄ +
1

2𝜐
−

1

2
                                                                                        (8) 

𝑉𝑎𝑟(𝑋) ≈
1

𝜈
𝜆1 𝜈⁄                                                                                                    (9) 

The approximations are especially good for 𝜈 ≤ 1 and 𝜆 > 10𝜈
 (Shmueli et al, 

2005). 

 

Estimation of the poisson parameter 

 

The moments of the COM-Poisson will be related to that of the Poisson distribution 

to determine the relationship between them by equating equation (2) to (8) and (9) as: 

 𝜃 = 𝜆1 𝜈⁄ +
1

2
(
1

𝜈
− 1)                                                                                  (10) 
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𝜃 =
1

𝜈
𝜆1 𝜈⁄                                                                                                       (11) 

Solving for 𝜃 in terms of  𝜆 as well as 𝜈: 

    𝜃̂1 =
1

2𝜐
                                                                                                                          (12) 

    𝜃̂2 =
0.5ln(0.5)

𝑙𝑛𝜆
                                                                                                              (13) 

As noted by Shmueli et al (2005), a simple and computationally efficient method of 

finding estimates of 𝜆 and 𝜈 is the linearizing of equation (5) as: 

𝑙𝑛 [
𝑃(𝑋 = 𝑥 − 1)

𝑃(𝑋 = 𝑥)
] = −𝑙𝑛𝜆 + 𝜈ln(𝑥)                                                          (14) 

Ignoring all counts with zero frequencies in the data, the ratio 𝑟 =
𝑃(𝑋=𝑥−1)

𝑃(𝑋=𝑥)
  is to be 

computed and displayed in Table 1. 

Table 1. A layout of the data 

X x1 x2 … xn 

P(x) p1 p2 … pn 

r - r1 … rn-1 

 

A simple linear regression of (14) will enable one to obtain estimates of ̂  and ̂
where 𝑃(𝑋 = 𝑥) and 𝑃(𝑋 = 𝑥 − 1) are replaced by the respective relative frequencies. Note 

that  𝑝𝑖 =
𝑓𝑖

∑𝑓𝑖
  where 𝑓𝑖 is the corresponding non-zero frequency.  

Considering the two estimates of θ, then the corresponding Poisson distributions 

are: 

𝑃𝑗(𝑋 = 𝑥) =
𝑒
−𝜃̂𝑗𝜃̂𝑗

𝑥

𝑥!
  for j=1,2        (15) 

We compute the estimates of the probabilities for the two cases above and deduce 

the corresponding frequencies 𝑓𝑖. Then we compute the mean and variance of the Poisson 

using the estimates 𝑓𝑖 for the two cases and note the extent of the closeness (or lack of it) of 

the mean and variance. 

 

Description of the datasets 

 

The following data sets were used in the study because of the varying inherent dif-

ferent levels of dispersion. 

Dataset 1 

The data set consists of quarterly sales of a well known brand of a particular article 

of clothing at stores of a large national retailer. This data set was published by Shmueli et al 

(2005) and is available at http://www.stat.cmu.edu/COM-Poisson/sales-data.html   

Dataset 2 

Gilchrist (1984) refers to an experiment in which a total of 33 insect traps were set 

out across sand dunes and the number of insects caught in a fixed time was counted. The data 

consists of the number of traps containing various numbers of the taxa staphylinoidea. 

 

Dataset 3 

The data gives the fertility of eggs of the CP strain of Drosophila melanogaster 

raised in 100 vials of 10 eggs in a study by Sokal (1966) and reproduced in Sokal and Rohlf 

(2003; pp. 96) 
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Dataset 4 

It is well known that there is a tendency for unisexual sibships to result in a 

clumped distribution of observed frequencies. In an extensive study by Geissler (1889), the 

sex ratio of 6115 sibships of 12 children were recorded from actual hospital records in Saxo-

ny, Germany. The data consists of the number of females per sibship X. The data is repro-

duced in Sokal and Rohlf (2003; pp 80) 

 

Results and discussion 

 

 Dispersion of the original data 

Table 2 gives the extent of dispersion of the raw datasets on the basis of their mean 

and variance. Note that over-dispersion occurs when the variance exceeds the mean. 

 

Table 2. Means and Variances for the data sets 

Dataset Mean  Variance Dispersion 

Shmueli 3.56 11.31 Over-dispersed 

Gilchrist 1.64 2.74 Moderately  

Over-dispersed 

Geissler 5.77 3.49 Under-dispersed 

Sokal 5.91 5.56 Moderately  

under-dispersed  

 

Estimates for 𝝀, 𝝂 and the corresponding 𝜽 

The estimates were obtained using the regression run in equation (14) and substi-

tuted in equations (15) and (16). The results are shown in Table 3 below. 

 

Table 3. Estimates of 𝜆, 𝜈 and the corresponding 𝜃′𝑠 

Data Set Estimate of 𝜈 Estimate of 𝜆 Estimate of 𝜃1 Estimate of 𝜃2 

Shmueli 0.135 0.887 3.704 2.890 

Gilchrist 0.109 0.768 4.587 1.310 

Geissler 1.476 10.890 0.339 -0.145 

Sokal 0.557 2.889 0.897 -0.330 

 

It should be noted that the θ̂2 estimates for the Geissler and Sokal dataset do not 

provide valid estimated of a Poisson parameter since they are negative and hence are ignored. 

 

Assessment of the means and variances for the estimated Poisson model 

The means and variances for all the data sets were recomputed using the estimated 

probability for a Poisson parameter ̂ . The results are presented in Table 4 for 𝜃̂1 and Table 5 

for 𝜃̂2. 

 

Table 4. Means and Variances for the datasets after calculating frequency estimates for 𝜃̂1 

Data Set Mean Variance 

Shmueli 3.704 3.705 

Gilchrist 1.310 1.340 

Geissler 0.339 0.339 

Sokal 0.910 0.907 
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Table 5. Means and Variance for the data sets after calculating frequency estimates for 𝜃̂2 

Data set Mean Variance 

Shmueli 2.89 2.89 

Gilchrist 3.156 3.173 

Geissler - - 

Sokal - - 

 

In comparison to results in Table 2, the empirical results clearly shows that the Pois-

son parameters estimated by the COM –Poisson to have effectively induced the equi-

distribution property of the Poisson probability distribution which is a prerequisite for analys-

ing count data which is assumed to follow that distribution. 

 

Conclusions 

 

Despite its usefulness when it comes to handling count data, the Poisson distribu-

tion is impractical to use because its assumptions of equi-distribution are rarely met in real-

life count data. The COM-Poisson has been found to be flexible when handling count data 

as it caters for both over- and under-dispersion. However, a major deficiency for the distri-

bution is the lack of closed form moments which in turn renders it impossible for use in test-

ing hypotheses about the parameters λ and ν. For example, the test statistic for the Neyman-

Pearson lemma is impossible to derive. In this case, the test may be approximated by the 

estimated Poisson model. In view of the results in this study it is recommended that care be 

taken when analyzing data that is deemed to follow a Poisson process. Exploratory analysis 

should be undertaken to check whether the data indeed conform to the Poisson distribution. 

If not, then the COM-Poisson distribution should be applied to induce equi-distribution which 

is a key requirement for any Poisson process. 
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