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Abstract 

Batting average is the most commonly used measure of batting performance in cricket. It is defined 

as the total number of runs scored by the batsman divided by the number of innings in which the 

batsman was dismissed. Generally, the innings of a batsman comes to an end due to his dismissal, 

yet there are some cases in which the batsman may not get dismissed due to sudden termination of 

the batting innings of the team. The sudden termination may take place due to bad weather or 

victory or injury of the batsman or for running short of partners etc. In case, there are several not 

out innings in the career of a batsman, the batting average may get overestimated. To overcome 

this problem of over estimation, several authors proposed different modifications to the existing 

formula of batting average or defined new measures. Though each method expressed its 

advantages over the existing batting average, yet none of them are universally accepted as the 

most efficient replacement of the existing formula. This paper makes an attempt to study the 

existing solutions to the problem and then to evaluate the best or at least the most compatible 

alternative. For the purpose of quantification, data from the ICC Cricket World Cup played in 

Australia and New Zealand in 2015 is considered. 
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1. Introduction 

Cricket is an outdoor game played with bat and ball in a specially prepared area in 

the center of circular field called a pitch. The game is played under certain rules and regula-

tions between two teams of eleven players each. The teams take turn at batting and fielding. 

Each of such turn is called an innings. The aim of the fielding team is to dismiss all the bats-

men of the batting team and/or to restrict the flow of runs. Presently, there are three ver-

sions of cricket being played at the international level: test cricket, one-day international 

cricket (ODI) and Twenty20 cricket (Saikia, Bhattacharjee & Radhakrishnan, 2016). While test 

match is an unlimited over game, ODI and Twenty20 are restricted over versions of cricket. 
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The ODI matches are of 50 overs per innings; and Twenty20, as the name indicates are of 

20 overs duration only. ODI and Twenty20 format are called limited over format of cricket. 

In limited over cricket, the team which bats first sets a target for the opponent team to attain 

in the second innings.   

In cricket each batsman try to score as much runs he can against the bowling attack 

of the fielding team. The bowlers on the other hand, with the help of the fielders try to re-

strict the batsman from scoring runs. Though both bowling and batting are the prime skills of 

the game of cricket yet in this work, we shall concentrate on a very common measure of 

batting performance viz. the batting average. The batting average is an index of the batting 

ability of a cricketer.   

The batting average of a batsman in ‘n’ innings (say) is defined as the total runs 

scored by the batsman in those innings divided by the number of complete innings. The 

phrase ‘complete innings’ means the innings in which the batsman was dismissed. If the 

batsman gets dismissed in all his innings then the batting average is as good as the arithme-

tic mean of the runs scored by the batsman in those ‘n’ innings. However, if the batsman 

remains not out in some of the innings (antonymous to ‘dismissed’), then the numerator 

remains same i.e. the runs scored by the batsman in those ‘n’ innings but the denominator is 

only the innings in which the batsman was dismissed i.e. less than n. Thus, if there is at least 

one not out innings in the collection of ‘n’ innings then the denominator is less than the 

number of terms in the numerator. This may overestimate the actual batting performance of 

a batsman, if measured through batting average. A hypothetical situation, in which the 

batsman is not dismissed in any of his innings, the batting average remains undefined. Many 

authors addressed this problem and defined different measures to compliment the issues 

concerning the batting average. Van Staden et al. (2009) gives a summary of all these 

methods. In this work, we try to explore these options and try to find out the best or the most 

compatible of the options.  

Section 2 of the paper reviews the different types of performance measures in cricket 

and provides a brief introduction to all the extended batting averages defined by the differ-

ent authors. The next section of the paper provides in details different formulae of all the 

extended batting averages. Section 4 is the methodology of the paper where the data 

source, process of comparison and relevant statistical methods are discussed. The result of 

the calculations is discussed in Section 5 and the last section concludes the work with some 

directions for future work.  

 

2. Literature Review  

 

Cricket is a data-rich sport. So different quantitative works by researches based on 

data generated from cricket are frequently encountered. Out of which a significant amount 

of work is concentrated towards performance measurement in cricket. Batting and bowling 

are two prime skills of the game. Thus, different traditional measures are used in cricket to 

quantify batting and bowling performance of cricketers. While batting average and strike 

rate are two very commonly used measures of batting performance, bowling average, bowl-

ing strike rate and economy rate are commonly used measured of bowling performance. In 

addition to these measures, several other authors have defined other innovative measures of 

quantifying batting and bowling skills of cricketers. Mention can be made of the Combine 

Bowling Rate by Lemmer (2002) and other measures of bowling performance by Beaudoin 
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and Swartz (2003), Kimber and Hansford (1993) and Van Staden (2009). In case of innova-

tive measures concerning batting performance mention can be made of Lemmer (2004), 

Barr and Kantor (2004), Croucher (2000), Basevi and Binoy (2007), Kimber and Hansford 

(1993). Brettenny (2010) reviews the different batting and bowling performance measures 

proposed by different authors.   

Out of the traditional measures of quantifying batting performance in cricket the batting 

average is the most commonly used in all formats. The formula for which is given by, 
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Where 𝑥𝑖; 𝑖 = 1,2, … 𝑛 denote the runs scored by a batsman in n completed innings and 𝑥𝑖
∗; 𝑖 =

𝑛 + 1, 𝑛 + 2, … 𝑛 + 𝑚 denote the runs scored by a batsman in m not-out innings. The disad-

vantage of using this formula is that it can overestimate the batsman’s batting average. His-

torically, the principle criterion used for comparing batsmen in the game of cricket has been 

the batting average, but unfortunately, when a batsman has a high proportion of not-out 

innings, the batsman’s batting average will be inflated  (Van Staden et al. 2009). The prob-

lem of the study looks beyond the works done by Van Staden et al. (2009). 

To address this issue, several authors have suggested changes in the formula of 

batting averages with techniques ranging from the concept of survival analysis to Bayesian 

estimation. Some of them are Danaher (1989), Lemmer (2008a), Damodaran (2006), Maini 

and Narayanan (2007) etc. Though each of the methods is developed based on correct sta-

tistical logic yet there is no universal acceptance of any of these methods, as a solution to 

the problem of over estimation existing in (1).   

Van Staden et al. (2009) analyzed and compared different methods which are de-

signed to deal with the problem of inflated batting average due to the presence of a high 

proportion of not-out innings. From the work of Van Staden et al. (2009), one finds that 

none of the methods clearly outperforms all the other methods. His work only made an em-

pirical comparison of ten different methods but cannot reach to a meaningful conclusion viz. 

the best method of computing the batting average. This provided us with a motivation to 

take up the problem. 

 

3. Description of the different Batting Averages 

 

The simplest solution for dealing with the problem of inflated batting average is to 

use the “real” AV instead of the conventional AV by dividing the number of runs scored in all 

innings by total number of innings, 
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With realAV  the distinction between completed and not out innings is ignored, and, 

by doing so, the occurrence of inflated averages is completely eliminated (Howells, 2001).  
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Danaher (1989), proposed the product limit estimator (PLE) to estimate the batting average. 

The PLE is a non-parametric estimator originally designed by Kaplan and Meier (1958) for 

the use in life insurance and the actuarial field in general. 

With the PLE, all not out batting scores are censored. Then, 
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Where 𝑦𝑖:𝑛; 𝑖 = 1,2, … 𝑛 denote the ranked distinct uncensored scores, 𝑦0:𝑛 = 0, ∆𝑦𝑖:𝑛 = 𝑦𝑖:𝑛 −

𝑦(𝑖−1):𝑛,𝑑𝑗 is the number of uncensored scores equal to yi:n and cj the number of censored and 

uncensored scores greater or equal to 𝑦𝑗:𝑛. To ensure that the PLE is finite, the maximum 

score is uncensored, even if it is a not-out score. 

Unfortunately the calculation of the PLE is extremely complex, so it is unlikely that 

the cricketing world shall favour it. Also, after each extra innings of a batsman, the PLE has 

to be recalculated completely. Furthermore, as pointed out by Danaher (1989), the PLE is 

insensitive when many of the high scores are not-out scores and hence censored. 

Generally a batsman will always have PLE ≤ AV. However, it is interesting to note 

that the value of the PLE can be greater than that of AV. This can happen when a batsman’s 

highest score is an outlier, that is, when the highest score is much larger than the second 

highest score and, in effect, the rest of the batsman’s scores (Danaher 1989). 

Lemmer (2008a) considered innovative estimators of the type 
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Where, the factor gf is used to adjust the not out scores to obtain completed scores. The sim-

plest estimator of this type is 2e  with, 22 f , so that not out batting scores are doubled 

(Lemmer, 2008a). 
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The justification for the choice of 22 f
 
is that, if a batsman had a not out score 

and assuming that the batsman would be allowed to continue till he gets dismissed, then, on 

average, he could have been expected to double his score. 

Lemmer (2008a), also considered many other possible factors, and found that 6e  

with 
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*  is the average of the not out batting scores.

  

Thus we define e6 as, 
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Lemmer (2008a) showed that 2e  and 6e  are closely related. But the calculation of 

6e
 
is more complicated than that of 2e , accordingly he suggested that 2e  can be used for 

ease in calculations without much compromise with accuracy. Lemmer (2008b) recommend-

ed, 

 6226
2

1
eee   (7) 

 

Van Staden et al. (2009), defined another simpler measure like that of e2 with an 

interesting modification. According to that method, the runs scored in the not out innings is 

either doubled or restricted to the highest score achieved by the batsman in the past tour-

nament or career innings. Out of the two options, the minimum shall be considered for a not 

out innings. It is denoted by 
re2 . 

Damodaran (2006), utilized a Bayesian approach to replace not out scores with 

conditional average scores. Consider the series of innings t = 1, 2,…,n+m, if the score in 

innings t is a complete score, xt then we take zt = xt. If the score is a not out score, 
*
tx , then 

this score is replaced by 
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where 𝑍1, 𝑍2, … , 𝑍𝑡−1 are the series of completed and/or adjusted scores up to innings 

 𝑡 − 1, 𝐼(𝑍𝑙) = 0 𝑖𝑓 𝑥𝑖
∗ ≥ 𝑍𝑙𝑎𝑛𝑑 𝐼(𝑍𝑙) = 1 𝑖𝑓 𝑥𝑖

∗ ≤ 𝑍𝑙 

The estimator for the average is then given by, 
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Maini and Narayanan (2007) proposed a method based upon exposure-to-risk. Let 
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Be the average number of balls faced by a batsman in his nm  innings and let 

nrrr ,..,, 21
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is a completed score, .1ir

 
In effect 
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the exposure is one for all completed innings. If the score is a not out score and ,* bbi 
 
then, 

b

b
r i
i

*
*  , else 1* ir .  The average is then calculated by 
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Van Staden et al. (2009) pointed out two issues with the AVexposure - first, the number 

of balls faced by a batsman in a not-out innings is compared to the average number of balls 

faced over the whole tournament or career of this batsman. Thus, the exposure calculated 

for a not-out innings depends on past and future batting performances, which is not logical. 

Surely only past batting performances should be used. Further, the exposure for each past 

not-out innings must be recalculated each time the batsman bats again. So an immediate 

advantage of only using past batting performances will be that the exposure for past not-out 

innings need not be recalculated after each additional innings. The second concern has to 

do with the calculation of the average number of balls faced. Accordingly, Van Staden et al. 

(2009) suggested that a batsman should benefit from surviving the opposition’s bowling 

attack by comparing the number of balls faced in a not-out innings to the survival rate in-

stead of the average number of balls. Applying both the adjustments to the exposure-to-risk 

method, if a batting score is a not-out score and ii SVb *
 where iSV , is the survival rate for 

the batsman for all innings up to and including innings i, then  

i

i
i

SV

b
r

*
*  , else 1* ir . Ac-

cordingly, Van Staden et al. (2009) denoted the average based upon our adjusted exposure-

to-risk method by survivalAV  to distinguish it from exposure osureAVexp . 

 

4. Methodology 

 

To compare the different averages discussed so far we need to apply it to some live 

data and compute the different averages. The conformity between the different methods 

shall be checked by the Kendall’s coefficient of concordance and then in case of non-

conformity sensitivity analysis shall be performed to find out the average that has maximum 

compatibility with the other averages. Detailed explanation of data source and the method-

ologies are explained in the subsequent subsections.  

 

4.1. Data Source and Training Sample 

For computing the batting averages using different methods and then for further 

relevant computations to reach the objective of the study we need a real data set. For the 

dataset, the matches played in the 2015 World Cup in Australia and New Zealand, is con-

sidered.  The world cup of 50-overs a side saw 49 matches in the tournament. The necessary 

data from those matches are collected from the website www.espncricinfo.com. For the pur-

pose of the study, the batsmen who satisfy the following criteria are considered in the trial 

sample for the computation of batting averages using the different methods: 
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 The batsman who has played at least 5 innings in the entire tournament 

 The batsman who was not-out in at least one innings in the entire tournament 

 The batsman who has faced at least 200 balls in the entire tournament 

 

4.2. Computation of Averages  

Following the restrictions as in the previous section, 20 batsmen qualified for the 

training sample, details of which are provided in Appendix I. Based on the different methods 

discussed above the computation are done and the averages along with the ranks are sum-

marized in Table 1.  

 

4.3. Kendall’s Coefficient of Concordance 

Since the formula for computation, varies from each other so it is obvious that the 

computed average using different methods will give different values even for the same 

batsman. However, the ranks of the batsmen shall not be much variant across the different 

methods, if based on the same data. Thus, once the averages of the batsmen are obtained 

using different methods, the batsmen shall be ranked based on each of the methods. Then 

considering each method of average as one of the rater, Kendall’s coefficient of concordance 

shall be computed. Kendall’s coefficient of concordance is a measure of agreement among 

raters and is defined as follows. 

Assume there are m raters (here 10 different method of averages) rating k subjects 

(here 20 different batsmen) in rank order from 1 to k. Let ijr the rating rater j gives to sub-

ject i. For each subject i, let 




m

j

iji rR

1

 let R  be the mean of the iR  , and let R be the 

squared deviation, i.e. 
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Now we define Kendall’s W by 

 2 3
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m k k
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It is also to be noted that the value of W always lies between 0 and 1 i.e. 

10 W . It is given that by the first property of Kendall’s coefficient of concordance when 

5k  or m > 15, 
2

1~)1(  kWkm  . This rule can be used to test the null hypothesis that 

all the raters (averages) have ranked the subjects (batsmen) in a uniform manner.  

 

4.4. Pareto Ordering for Compatibility 

If the null hypothesis mentioned in the previous sub-section is rejected for the exer-

cise on the current data set, then it means that the different methods of averaging have not 

ranked the batsmen in a uniform way but differently. In such a case, we can take the help of 

Pareto ordering to determine that average (set of ranks) which has the maximum compatibil-

ity with the other averages (set of rankings).  Chakrabarty and Bhattacharjee (2012), can be 
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consulted for detailed discussion of the Pareto ordering method. In brief, its working can be 

explained by the following way, 

Let, the subscript i is an index attributed to identify the batsman. Since, there are 

20 batsmen in the training sample so i = 1, 2, …, 20 and the subscript j (or k ) is an index 

attributed to the method of averaging. As, there are 10 method of averages discussed in the 

paper so j (or k) = 1, 2, …, 10 . Next, we define,  

j
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th
 batsman in the j

th
 method of computing average 

jk

id Square of difference between ranks of the i
th
 batsman for the j

th
 and k

th
 method of 

computing average =  2k

i

j

i RR   

jD Sum of square of distance between ranks of the j
th 

method of averaging with all other 

methods across all batsmen =  
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10

1

20

1jk i

jk

id   (14) 

So, the compatibility score corresponding to the j
th
 method of averaging is given by 

jD as defined in (14). Lesser the compatibility score of a given method of average more is 

the compatibility of that average with a set of similar other method of averages. 

 

5. Results and Discussion 

 

Considering the data restriction mentioned above 20 batsmen got selected in the 

training sample. The batting average of all of them is calculated using the different method 

of averages and are placed in Table 1 below.  

 

Table 1. Averages of the batsmen in the training sample under the different methods  

Player name AV 

 

PLE 

       

SPD Smith 67(6) 57.43(5) 61.46(3) 65.43(8) 62.55(2) 63.99(5) 57.43(5) 57.43(5) 57.43(6) 59.04(5) 

David Warner 49.29(13) 43.13(11) 48.058(9) 45.75(16) 45.72(10) 45.74(14) 43.13(11) 43.13(11) 48.14(9) 48.69(9) 

Mahmudullah 73(3) 60.83(3) 56.67(7) 82.17(4) 59.13(4) 70.65(3) 60.83(3) 60.83(3) 60.83(3) 61.98(3) 

IR Bell 52.4(11) 43.67(10) 44.75(13) 52.33(11) 49.56(7) 50.95(10) 43.67(10) 43.67(10) 43.73(11) 46.28(12) 

MS Dhoni 59.25(9) 39.5(13) 44.5(14) 61.17(9) 34.63(14) 47.9(11) 39.5(13) 39.5(13) 39.5(13) 45.69(13) 

Suresh Raina 56.8(10) 47.33(8) 41.33(15) 65.67(7) 49.17(8) 57.42(7) 47.33(9) 47.33(9) 47.33(10) 46.6(11) 

Virat Kohli 50.83(12) 38.13(15) 46.42(11) 47.75(15) 37.23(12) 42.29(15) 38.13(15) 38.13(15) 39.23(14) 47.24(10) 

Rohit Sharma 47.14(14) 41.25(12) 46.69(10) 48.38(14) 45.74(19) 47.06(12) 41.25(12) 41.25(12) 41.25(12) 42.97(14) 

Ajinke Rahane 34.67(17) 29.71(17) 33.79(16) 33.43(17) 33.82(15) 34.12(17) 29.71(17) 29.71(17) 30.69(18) 32.22(18) 

MJ Guptill 68.38(4) 60.78(4) 46.11(12) 87.11(3) 29.97(17) 58.84(6) 60.78(4) 60.78(4) 60.78(4) 55.78(7) 

GD Elliot 44.29(15) 38.75(14) 60.98(4) 49.25(13) 42.53(11) 45.89(13) 38.75(14) 38.75(14) 38.75(15) 35.54(15) 

KS Williamson 33.43(18) 26(19) 30.59(18) 32(18) 25.79(19) 28.9(19) 26(19) 26(19) 27.02(20) 31.59(19) 

CJ Anderson 33(19) 28.88(18) 32.67(17) 29.75(19) 29.86(18) 29.81(18) 28.88(18) 28.88(18) 31.64(17) 32.34(17) 

LRPL Taylor 31.57(20) 24.56(20) 29.7(19) 27.78(20) 24.64(20) 26.21(20) 24.56(20) 24.56(20) 27.2(19) 27.56(20) 

AB de Villiers 96.4(2) 68.86(2) 75.67(2) 101.29(2) 53.7(6) 77.49(2) 78.14(1) 78.321(1) 69.42(2) 78.44(2) 

DA Miller 64.8(7) 46.29(9) 50.95(8) 72.57(5) 36.82(13) 54.7(9) 52.86(8) 53.07(8) 48.42(8) 51.44(8) 

F du Plessis 63.33(8) 54.29(7) 59.83(5) 57.29(10) 57.26(5) 57.27(8) 54.29(7) 54.29(7) 58.61(5) 59.72(4) 

KC Sangakarra 108.2(1) 77.29(1) 101.63(1) 109(1) 62.86(1) 85.93(1) 77.29(2) 77.29(2) 77.29(1) 90.13(1) 

MN Sammuels 38.33(16) 32.86(16) 19.29(20) 51.86(12) 30.39(16) 41.12(16) 32.86(16) 32.86(16) 32.86(16) 34.71(16) 

SC Williams 67.8(5) 56.5(6) 59.82(6) 69.17(6) 62.07(3) 65.62(4) 56.5(6) 56.5(6) 56.5(7) 58.11(6) 

realAV 2e
6e 26e

re2 BayesianAV osureAVexp survivalAV
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In Table 1, the name of the batsman appears along the row heads and the method 

of average along the column heads. The number in the cell indicates the average of the 

batsman appearing in the row head using the method of average indicated by the column 

head. The numbers in parenthesis in each of the cells shows the rank of the cricketer de-

pending on the method of averaging as given in the column head. It may be seen that KC 

Sangakara is ranked first in most of the method eight out of ten and LRPL Taylor is ranked 

last (20
th
) in eight out of ten methods.  

Now, Kendall’s coefficient of concordance is computed for the data set, with an aim 

to test the null hypothesis W = 0, which is an indication that there is agreement among the 

methods. The computation for the data set under consideration provides, W = 0.9034 with 

the p-value of the corresponding 2
 statistic as 0.000 indicating that there is a clear disa-

greement between the different method of averages.     

Next we perform Pareto ordering and compute the values of D 
j 
following (14) 

above. Table 2 provides the compatibility score of the different batting averages. Minimum 

the value of D 
j 
more compatible is the method of averaging. The table shows that, e2

r 
and 

AVBayesian has maximum compatibility with the other methods of averaging. AVreal acquires the 

next position in compatibility with very close compatibility score with e2

r 
and AVBayesian. How-

ever, considering the simplicity of AVreal , one may consider it as the best method of compu-

ting batting average.  

 

Table 2. Compatibility Score (D 
j
) of the different method of computing the batting average 

AV AVreal PLE e2 e6 e26 e2
r 

AVBayesian AVexposure AVsurvival 

1060 870 2278 1750 2988 952 868 868 1008 1090 

 

6. Direction of Future Work and Conclusion 

 

Of the different formats of cricket, this exercise is performed here only on one day 

international (ODI) cricket that too for a tournament only. In this exercise, we found that e2

r 

and AVBayesian has maximum compatibility compared to the other method of averages. In or-

der to generalize the result, several such exercises shall be performed over different sets of 

one day international matches. The exercise can be extended to other formats of cricket like, 

Twenty20 and test cricket as well.  This can enable the researcher to understand how the 

batting average shall be best defined depending on the format of cricket. However, what is 

statistically correct may not be accepted to cricket analysts and fans. The batting average 

needs to be well and simply defined, so that any cricket fan can easily compute the average. 

In this regard, in this exercise, AVreal even being in the second position shall earn more ac-

ceptance than others.  
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Appendix 1. Innings wise performance of the batsmen in the training sample 

   Innings 

Batsman 
1 2 3 4 5 6 7 8 9 

SPD Smith 5(9) 4(11) 95(98) 72(88) 65(69) 
105 

(93) 

56* 

(71) 
  

David Warner 22(18) 
34 

(42) 

178 

(133) 
9(12) 

21* 

(6) 

24 

(23) 
12(7) 

45 

(46) 
 

Mahmadullah 
23 

(46) 

28 

(46) 

62 

(62) 

103 

(138) 

128* 

(123) 

21 

(31) 
   

I R Bell 36(45) 8(17) 54(85) 49(54) 63(82) 52*(56)    

M S Dhoni 18(13) 
18 

(11) 

45* 

(56) 

85* 

(76) 
6(11) 65(65)    

S R Raina 74(56) 6(5) 22(25) 
110* 

(104) 
65(57) 7(11)    

Virat Kohli 
107 

(126) 

46 

(60) 

33* 

(41) 
33(36) 

44* 

(42) 
38(48) 3(8) 1(13)  

Rohit Sharma 15(20) 0(6) 57*(55) 7(18) 64(66) 16(21) 
137 

(126) 

34(48

) 
 

Ajinka Ra-

hane 
0(1) 

79 

(60) 
14(34) 

33* 

(28) 
19(24) 19(37) 44(68)   

MJ Guptill 49(62) 
17 

(14) 
22(22) 11(14) 57(76) 

105 

(100) 

237* 

(163) 

34(38

) 

15 

(34) 

GD Elliot 29 (34) 29(31) 0(1) 19(28) 39(34) 27(11) 84(73) 
83(82

) 
 

KS Williamson 57(65) 
38 

(45) 
9(22) 45(42) 33(45) 1(2) 33(35) 6(12) 

12 

(32) 

CJ Anderson 75(46) 
11 

(16) 

26 

(42) 
7(8) 39(26) 15(16) 58(57) 0(2)  

LRPL Taylor 14(28) 9(14) 5(5) 1(2) 24(41) 56(97) 42(61) 
30 

(39) 

40 

(72) 

AB devilliers 25(36) 
30 

(38) 

162* 

(66) 
24(9) 77(58) 99(82) 

65* 

(45) 
  

DA Miller 138*(2) 22(23) 20(16) 46*(23) 0(13) 49(48) 49(18)   

F duplessis 24(32) 
55 

(71) 
62(70) 

109 

(109) 
27(29) 

21* 

(31) 

82 

(107) 
  

K Sangakarra   39(38) 
7* 

(13) 

105* 

(76) 

117 

(86) 

104 

(107) 

124 

(95) 
45(96)   

Marlon Sam-

muels 
21(41) 

38 

(52) 

133* 

(156) 
0(9) 2(7) 9(18) 27(15)   

SC Williams 8(13) 
76* 

(65) 
76(61) 33(32) 96(83) 50(57)    

Source: http://www.espncricinfo.com/icc-cricket-world-cup 2015/engine/series/509587.html? view=records 

Note: Not out innings is indicated by *. Figures in bracket indicate the number of balls faced.   
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