

Reliability and Quality Control – Practice and Experience

17

SPECIFIC ASPECTS OF FINANCIAL AND ACCOUNTANCY
SOFTWARE RELIABILITY

Marian Pompiliu CRISTESCU
PhD, University Professor
“Lucian Blaga” University of Sibiu, Romania

E-mail: mp_cristescu@yahoo.com

Abstract: The target of the present trend of the software industry is to design and develop
more reliable software, even if, in the beginning, this requires larger costs necessary to obtain
the level of reliability. It has been found that in the case of software which contain large
amounts of components - financial and accounting software are also included here – the
actions taken to increase the level of reliability in the operational stage induces a high level of
costs. This one is superior to the one that involves obtaining systems of software with an
adequate reliability, before releasing them on the market and before using them. Before
taking into account the material and financial aspects that involve obtaining the adequate
reliability, we must consider the social effects that occur because of the lack of reliability of
software. The conclusion is that, if we begin with the idea that a system of accounting software
is a fitted and well structured ensemble of different components – from a constructive point of
view – which satisfy interconnected needs, the reliability of the entire system depends directly
on the reliability of each component.

Key words: software reliability; software metrics; object-oriented software; error; fault;
failure; financial and accountancy software

1. Introduction

The main method used in building complex systems is abstractization. A system is
built on levels; level B is made out of components from level A. But at the same time,
components from level B are used as if they were atoms, independently, to build level C and
so on.

An important subject in the theory of reliability is the construction of more reliable
software, from components which are more or less reliable. If a system works only when
every component is functional, it is impossible to build a complex system because the
reliability decreases exponential with the amount of components.

Certain classes of programmes, such as those from air traffic controls and
supervision of nuclear power plants, need a high reliability level. In critical programmes, the
architects of the systems take into consideration the possibility of failure, which they treat in
the software

Reliability and Quality Control – Practice and Experience

18

A system of programmes, from a static point of view, appears as a function f defined

through X, with values in Y – of final results. Function YXf →: represents in a static way

the system of programmes and is:
• a partial function, if for every x∈ X there is a value y ∈ Y so as y=f(x);
• a total function, if for every x∈ X there is a value y ∈ Y so as y=f(x).

In conclusion the total function correspond to a system of programmes that allows
the solving of a problem for every initial data, and the partial function corresponds to a
system of programmes which supplies us with solutions of certain sets of values.

A system of financial and accounting programmes is identified with a complex
process, made out of many subprocesses, based on the rivalling model. This means
separating different tasks into performing processes which are parallel different. Figure 1
presents the way such a system of programmes is structured.

A problem which is dealt with by using the calculator is represented through a
calculating function, an algorithm. The same function is evaluated by a set of algorithms.
There are functions that cannot be evaluated by algorithms.

Figure 1. The tree of interconnected components

The structure is dynamical, which means that new performing processes are created
or old ones are finished, according to the will of the user. The lines from the figure show the
component which is being used and the using component, and the way we look at the tree is
from top to bottom.

Between the components there are no implicit connections once these are appealed
in the system, but if one wishes, a connection can be made. In this way a total control can be
restored over every component of the system. If the example of figure 1 is analysed, we can
see that the components A, C, E and F are interconnected; therefore the connection works
both ways, no matter if component C has established the connection or component E or F.

Economical procedures and especially those from the financial and accounting field
are recognised as having a high level of complexity. The difficulty associated with the
solutions of simple problems united is smaller than the one associated to the initial complex
problem. The architecture of the system expresses the way the system is entirely organized in
components named subsystems. The interaction is produced through the exchange of the
performing control. In the case of sequential programmes, the control belongs to only one
module. The software architecture also includes information regarding the necessary time
needed to perform every module.

The financial and accounting programmes are made out of subsystems; each is
made out of smaller subsystems; the lowest level is achieved by modules. A subsystem is a
package of connected classes, operations, associations, events and restrictions. These are
identified by the services offered; services are groups of functions with the same goal.

Reliability and Quality Control – Practice and Experience

19

A system of financial and accounting programmes offers a multitude of services
through its components. The goal is to satisfy the users` needs for a long period of time and
at a high quality level. The possibilities that the given functions are correctly executed for
some time by the system are done through the help of reliability. The reliability of the system
is determined by the reliability of the components, the number of components and the
structure of the system.

2. Stimulating the reliability of the financial and accounting systems

A financial and accounting system offers a variety of functions; therefore it contains
a big amount of components. Evaluating the reliability of the system is done by analyzing the
reliability of it’s` components. In this process, the structure scheme must be taken into
consideration. The components of the system are represented in figures 2 and 4. In a
structural reliability scheme, these are connected in series or parallel.

Figure 2. A serial structural scheme from a financial and accounting system

Figure 3. A parallel structural scheme from a financial and accounting system

In order to assure a normal functioning of a performing step, in the series scheme
all components have to be working, but in the case of the parallel scheme only one
component must be working.

The numerical simulation of the reliability of the financial and accounting system
has been achieved through the following algorithm:

• for n in series connected components, each of them having the reliability R, n evenly
distributed numbers between 0 and 1 are generated. If all n numbers are smaller or
equal to R, the system is functioning properly;

• for n in parallel connected components, each with the reliability R, n evenly
distributed numbers between 0 and 1 numbers are generated. If only one of the n
numbers is bigger or equal to R, the system is functioning properly.
Estimating the global reliability of the system is made by repeating these numerical

simulations for a number of times equal to the number of performing steps allowed. Because
in the case of the financial and accounting system this number is high, the problem has been
simplified and only 500 simulations have been performed.

AD_NOM FAC_NIR JUR_CUMP

FISA_CLI

BAL_CLI

SIT_CLI

Reliability and Quality Control – Practice and Experience

20

a). The numerical simulating programme of performing components connected in
series

n = [150,300]; % number of simulations
R = 0,8; % reliability of the components
m = 3; % number of series connected components
for j = 1 : length(n)

k = 0;
 for I = 1 : n(j)
 x = row(1,m);
 if all(x<=R)
 k = k + 1;
 else
 end

end
 f(1,j) = k / n(1,j); % reliability
 end

b). The numerical simulating programme of performing components connected in
parallel

n = [150,300]; % number of simulations
R = 0,8; % reliability of the components
m = 3; % number of parallel connected components

for j = 1 : length(n)

k = 0;
 for I = 1 : n(j)
 x = row(1,m);
 if any(x<=R)
 k = k + 1;
 else
 end

end
 f(1,j) = k / n(1,j); % reliability
 end

c). The global simulating programme of 500 performed simulations

 n = 500; R1 = 0,8;R2 = 0,92;

F1 = row(n,1); F2 = row(n,1);
N = length(F); % number of functions
fprintf(The reliability of the system is %3.2f\n',N/n)

The first programme takes figure 2 into consideration and uses components with

the reliability R=0,8. The second treats the case of figure 3 and also uses components with
the reliability R=0,8. In order to compare the calculated reliability, a number of 150 and 300
simulations have been conducted. The third programme takes into consideration a series
structure made out of two components, the first reliability R1=0,8, and the second reliability
R2=0,92.

After the first programme performed, the reliability obtained was:
[0,5200 0,5000].
After the second programme performed, these values of the reliability were offered:

[0,9920 0,9960].

Reliability and Quality Control – Practice and Experience

21

After the third programme performed, this value was obtained:
The reliability of the system is 0,74.
In practice it was been discovered that for financial and accounting programmes

which contain a big number of components, using the series and parallel scheme does not
assure a high level of reliability. Therefore, a mixed structure that combines the advantages
of both types is used. In figures 4.a and 4.b two specific cases of such mixed structures are
presented. These are frequently used for financial and accounting evidences.

4.a

4.b

Figure 4.a, b Mixed structural schemes
The following reliability calculations are used in both cases:
 in the first case, from figure 4.a, the reliability is given by the relationship:

()∏ ∏
= =

−−=
n

i
i

n

i
iim RRRR

1 1

1 (1)

 for figure 4.b the reliability is given by the relationship:

() ()∏ ∏
= =

−+−−=
n

i

n

i
iiim RRRR

1 1

111 (2)

Because the complexity level of these schemes is very high, the very difficult

necessity of simplification the structure function appears. In specialized literature [SZYP02]1,
[PHAM00], [DAVI03] different methods of reducing the structure of the function and
calculating the reliability of mixed structural schemes are presented. According to the
method presented in [GORO97], the components of a financial and accounting system must
be grouped regarding to the way they are situated in the serial or parallel graph and so, we
get a primary level of a programming group. This group is formed by components which are
connected in series or parallel. A new group on the next hierarchical scale follows and this
procedure is continued until a single series or parallel structure of n levels is formed, where
levels of n-1 components are displayed. These methods have a low applicability rate due to
a set of assumptions on which it relies and too many calculations.

FISAEC

FISAIM

CALC_RUL BAL_SIT

P_ORE

P_ZILE

SAL_RLZ CALC_CO

Reliability and Quality Control – Practice and Experience

22

3. Using modern programming techniques to increase the reliability
of financial and accounting software

The technique of object oriented modeling is a methodology used to develop

financial and accounting software by using a collection of predefined techniques and noting
conventions. It follows the entire life cycle which contains: analysing, designing,
implementation and testing. These are followed by the stage in which it is used, when the
maintenance and improvements on the system are done, to ensure the reliability needs
imposed by the client.

For the development of accounting programming objects, two approaches are
practiced: quick prototypization and the development of the entire life cycle. In the quick
prototypization a small part of the system is initially developed, after this it is improved
through gradual improvements of the specification and implementation, until it becomes
robust.

 The development methodology of software designed for financials and
accountings is firstly characterized by the analyzing and projection steps, whereas the
implementation and testing steps rely on the first. The analysis process has as a result a
formed model which contains three essential aspects of the system: the objects and the
relationships that exist between them, the dynamic flow between the orders and the
functional transformation of data, using certain restrictions. Therefore the OMT methodology
is bases on three models directed towards the object:

• the object oriented model – describes the static structure of data;
• the dynamic model – describes the temporal relationships of orders,
• the functional model – describes the functional relationships between values.

The programming technique frequently used is chosen on criteria such as error and
performance tolerance. In [KICM00] it is told that the extension of the traditional library of
stopping points is easy to do, so as this one is able to notice more directions from the same
process. A multidirectional set library of stopping points, which works at a processing level,
must save all directions for a verification point and to restore each of them when it is
restarted.

In [TEOD01] it has been demonstrated that this mechanism of stopping points
increases the flexibility and efficiency of the error tolerance schemes. Due to these
characteristics it is used in the development of financial and accounting systems, in order to
increase the efficiency of the tests and to raise the reliability level.

To exemplify the way this mechanism is used, an accounting programming system
which, for error tolerance, uses the distributing algorithm of coming and going – present in
[KICM00], is taken into consideration.

As a consequence of the existing relationships, the functions of the programming
system become interdependent. If one of them fails, the algorithm determines which of the
functions is dependent on the one that failed, and these must be performed backwards from
the last stopping point. This solution is suboptimal when every function is multidirectional. In
practice, it has been observed that only the paths dependent on the failing function must be
performed backwards and the others remain unchanged. When establishing stopping points
and backward points the following aspects are taken into consideration:

• the minimum frequency of performance for registering the dependencies and
other information about the performance of the programme;

Reliability and Quality Control – Practice and Experience

23

• the procedure for establishing selective testing points by using the information
and the guiding points so as to develop the restore algorithm;

• the selective backwards algorithm based on guiding points.
To demonstrate how to use the stopping point and backward point technique in

order to increase the reliability of financial and accounting software based on object
oriented modeling, two arguments are taken into account:

• investigating the way group stopping points, for isolated groups of objects and
communication ways of the programme, are established;

• investigating the way in which certain performing ways from a programme can
be performed backwards in a selective way and others continue to be performed;
during this period the general well being of the programming system is
preserved.

Developing error tolerance schemes at a high level involves the usage of selective
algorithms. In [ROMA03] it is said that the conventional models, that coordinate the process
of restoring, after errors of interacting components are detected, must be implemented at
the top of selective algorithms.

By using these techniques, the results obtained due to the growth in error tolerance
and, therefore, of the reliability, indicate the fact that using selective schemes at processing
levels is better than using techniques based on check points and also using recovery schemes
when the number of current functions or error numbers are high.

4. Developing high reliability for object-oriented software

The software developing process is schematized through the next stages: system

feasibility studying, problem analysing, designing, codification and system testing.
For a procedural programme system these stages correspond to a “warerfall”

pattern. This means that the system is divided into substages and each requirement is
previously known so that the tasks are performed one by one.

In the development of bookkeeping software based on this technology the starting
point consists of recognizing the requirements of the matter. Therefore, an initial version is
designed and then, as the requirements are better defined, the system is completed by
adding new components or the existing ones are improved.

Adopting the evolutionary developing design leads to obtaining intermediate forms
of the system, called prototypes. These resemble versions of the final form that are improved
in time, as the developing process continues. Such an approach allows the client’s effective
control over the system’s final version; the changes that occur in the client’s requirements
are accepted even if the analysis and design are in an advanced stage. The client’s
implication in the development process allows setting components and important sequences
of execution. This determines the diminishing of the testing effort and implicitly of the costs
and reliability increase.

Based on the evolutionary model, the development stages of the programming
system are performed with every frequentation and the resulted prototype is evaluated for
detecting the errors which are corrected in the next frequentation. In the system feasibility
study stage the clients demands are clearly defined and through the client’s implication a
solution are chosen from the existent ones.

Reliability and Quality Control – Practice and Experience

24

The architecture of the software for bookkeeping is divided in a number of
components that consist of one or more objects. These components are collections of objects
which collaborate for producing a service set. Each component is described by: functions,
internal objects, external objects with which interfaces also interact. It is because of the
interface that a component looks like a “black box” that shows only the entrances and
emergences.

The testing stage involves the validation of the system results from the previous
phases. The organisation of the designing process of the programme systems oriented
toward objects involves the existence of different levels of testing. This includes the testing of
methods, classes and modules, being based on an established initial plan that is finalised by
testing the entire system. Object-oriented technology is used for testing the software and its
main effect consists of improving the quality. A new programme system contains reused
objects that have already been tested and have an appropriate reliability level. The result is
that the testing effort is minimised and the reliability increases. In this case, the testing is
aimed toward new components and especially toward the critical ones.

Modularity is another important facility, frequently used for developing programme
systems designed for financial bookkeeping and it is based on object modeling. It allows an
easier detection of software errors. The repairing process of these systems is also improved
by establishing better connections between software items and real objects. As a result of
this facility programme systems are divided in autonomous components. This has important
effects on the human resources involved in the development and there, on the costs. The
structure and organisation procedures of these resources are defined according to the
defining manner of the components as well as the integration manner in the whole system.

It is recommended that these components should be developed by interfunctional
teams that integrate analysis, designing, codification and testing abilities so that the
development of each component is to be accomplished individually. In order to increase the
functionality level, the assembly of different components must be done by groups of
professionals that are in charge with the testing process of the entire programme system.

Practically it has been uncertain because of the limited resources of the companies
which develop programme systems for bookkeeping; some of these recommendations are
not followed. Therefore, in most cases the assembly of the components and testing the entire
system is made by the same people that have taken part in the analysis, designing and
codification phases. Thereby, they sometimes have a subjective vision upon the development
process that leads to the decreasing of the ability to detect errors in the initial phases. In this
kind of situations, the programme systems are moved to the operational stage, although
their reliability level is low. The exploitation costs of these systems are rather high, and the
users are not satisfied with the quality of the offered services.

In order to investigate the actual spreading of object-oriented technology among
the producers of software destined to keep a financial-accountancy record and to analyse
the characteristics of these practices on the software market, along the years, many actions
have been undertaken. One of these is represented by the straw poll made by a branch of
IBM in 2004. This was based on a questionnaire sent by e-mail and distributed at
conferences. The questionnaire was divided into 3 sections: technology, development
process and cost.

Reliability and Quality Control – Practice and Experience

25

Based on the results of the straw poll, the weight of the object-oriented software
production in the total financial-accountancy software production has been determined. This
aspect is shown in figure 5.

Figure 5. Grouping software producers according to the production of object-oriented
software level (Source: http://www.garavelli/poliba/docs.html)

Using the object-oriented technology is in many situations delayed by the high costs

required by the preparation. According to the dates, in only 8% of the companies the
programmers who have always worked corresponding to this technology represent more
than 80%, while in 57% of cases more than two thirds of the personnel has been converted
to work on the basis of the principles of object-oriented technology.

Concerning spreading the methods of object orientation in the phases of analysis
and designing of the software development process, it has been observed that 35% of the
companies do not use any kind of methodology at all. These results were compared to those
in section 3 of the questionnaire which refers to the exploitation costs of developed
programme systems. It has been established that the costs level for those companies which
do not use any kind of methodology is 27% higher compared to those who use object-
oriented methodology and 16% compared to those which use the classical object-oriented
methodology. 75% of the companies use prototypes during the process of software
development. The degree of prototypes use is shown in figure 6.

Figure 6. Using prototypes

(Source: http://www.garavelli/poliba/docs.htm)

Reliability and Quality Control – Practice and Experience

26

Analysing the data has shown the fact that using the inter-functioning teams in the
process of development is very frequent (68%). For 53% of the companies the size of the
team depends on the complexity of the programming system, and for 33%, on its` size. In
69% of the cases the team consists of employees with different abilities, but in 19% of the
cases the abilities of the members are homogeneous. The results also show that only 20% of
companies use a system of metrics to control the quality, and 64% do not use any kind of
metrics.

In figure 6 we can see that the frequency of prototyping is very high for 38% of
them, when 24% is dependent on the product, and 13% depends on the client.

The companies questioned were asked for their opinion regarding the improvement
of the reliability, as a consequence of four key influential factors which were placed on a
scale of 0 to 3. The analysis showed that important factors were considered the development
of reusable components (2,38), reusage of the existing components (2,26) or using
innovative technological software (2,23). Reusing parts is considered to be the most efficient
way of making reliability grow and this is why 66% of the companies produce own software
components, designed for future reuse. The reusable components are produced during the
development of a specific programming system (50%) or as a result of current activities
(23%). Only 16% of companies do not use these reusable components in the process of
improvement of the reliability of their software.

Because of this data, the majority of companies that develop software designed to
keep the financial and accounting evidence use the technique of object orientation. Using
reusable components represents a decisive factor in the process of reducing costs and
improving the reliability. To evaluate the reliability of the software of many companies,
adequate metrics and models are used.

The cost, from the total of sales that are formed when acquiring these components
is smaller than 10%, for most companies (69%), whereas for 19% of companies it is smaller
than 20%, growing until 30% for a percentage (12%) of the companies.

5. Specific aspects of the reliability of accounting software

The following factors determine the importance of the study of the reliability of

programmes:
• the growth in the complexity of the functioning programmes, as a result of them

being included in big software, and of the important functions that these must
realize; the consequence is a growth in the cost of the user, in case of errors;

• high expectations regarding the quality of software;
• the complexity of the exploitation needs;
• growing cost of exploitation and maintenance.
One of the characteristics of the annual production of software consists of creating

and developing complex systems – from the functional point of view. The programmes are
parts of such complex systems; therefore they must match the general conditions of the
system. The incorrect function of one of them, may lead to false results. The growing needs
related to the functioning quality of programmes and of the systems, find their source, for
example, in: a high flexibility, maintainability, portability, integrity, etc. Firstly, these needs
must be satisfied in the previous steps, which precede the current exploitation of the product

Reliability and Quality Control – Practice and Experience

27

by the user. When the programming system in the hands of the beneficiary is operational,
only its` quality must be confirmed.

The growth in the costs of exploitation and maintenance of software is mostly
determined by a lack of the reliability of the programmes it consists of.

In practice it has been discovered that, in the development stage, between the costs
of development and the level of reliability of accounting software there is a tight bond; the
components that need a high level of reliability have bigger costs in order to achieve this
goal.

Testing is a method of improving the reliability of accounting software. A high level
of reliability is achieved when the time span in which the testing is done is high and when
the test are refined. The testing process involves human and material resource, and an
increase in the testing efforts generates a growth in the costs of high level reliability
components.

In order to study these connected relationships, three components of the
programming system CONTGEST have been analysed. Each component had a specific level
of reliability, according to its` operational profile. The time of the tests was record. A specific
level for the cost had been attributed to the components, according to the total costs. The
characteristics recorded are shown in table 1.

Table 1. The characteristics of the components of the programming system CONTGEST

Component Time of testing (h) Costs (%) Reliability (%)

AD_NOM 51 27 76

ST_NOM 37 15 70

MOD_NOM 82 58 81

By analysing the data presented in table 1, we can observe that between the

reliability and the time of testing there is nonlinear dependence. Figure 7 shows the
relationship existing between these characteristics. We can see that the time of testing is not
the only factor that influences the reliability and this is why other factors must be taken into
consideration.

Figure 7. The relationship between the reliability and the time of testing for the

components of the programming system CONTGEST

Reliability and Quality Control – Practice and Experience

28

Due to a bigger appealing time of the programme MOD_NOM we can see that it

has a high level of reliability, which influences the general reliability of the programming
system CONTGEST. To obtain this goal, supplementary tests have been conducted, this
leading to a growth in the percentage of the cost for this programme in the total cost of the
three components.

Figure 8. The depending relationship of the reliability and the costs for the components of
 the programming system CONTGEST

If we take into consideration the complexity of the programming system CONTGEST
and its` structure, the analysis should be extended to a global level and we can determine
the way characteristics such as testing time and costs influence the reliability of the general
system. The information regarding the needs of the users and also the policy of the company
which developed the product, regarding the ratio price/quality interfere in this process.

Because the users did not express been given out for usage without maximizing its`
reliability. In the exploitation period problems regarding specific needs of the users have
appeared, this leading to higher level of maintenance costs, and in two cases, the first
version of the product had not been used before the newer version had not appeared.

6. Conclusions

In the study of the reliability of software, an important role is attributed to the
existing relationship between the costs of development of a programming system and its`
reliability. Obtaining a level of reliability that carries out all the needs imposed by the
system, involves big costs in the development stages. These are otherwise smaller that the
costs necessary to obtain the reliability needed in the process of exploiting the system –
which has low reliability components.

The cost that involve the exploitation and maintenance of a financial and
accounting software are directly depending on the level of reliability of the components and
the reliability needs imposed by the system. Therefore, when interfering we do not always

Reliability and Quality Control – Practice and Experience

29

achieve noticeable effects. There are cases where if we distinguish an error, others are
generated.

If we take into consideration the variety and complexity of accounting situations
that the programming system must deal with, the result is that efficiency is given firstly by the
way they respond to the needs of the user. When the interferences caused by flaws are rare,
the system is said to be more efficient – from every point of view. The frequency of errors
and therefore the level of reliability represent signs of loyalty regarding the efficiency of the
programming system.

References

1. Chillarege R., Kao W., Condit R. Defect Type and its Impact on the Growth Curve, Proceedings

International Conference on Software Engineering, May 2004
2. Cristescu M. Modelarea fiabilitatii sistemelor de programe, PhD. Thesis, Bucharest, 2003
3. Davis A.M. Software Requirements: Objects, Functions, and States, Prentice-Hall, Saddle

River, New Jersey, 2003
4. Goron S. Fiabilitatea softului, RISOPRINT Publishing House, Cluj-Napoca, 1997
5. Ivan I., Saha P. Quality characteristics of The Internet Applications, in DIGITAL ECONOMY -

The Proceedings Of The Sixth International Conference On Economic Informatics,
Bucharest, May 2003

6. Kim S., Clark J.A. and McDermid J. A. Class mutation: mutation testing for object-oriented
programs, in Proceedings of the NetObjectDays - Conference on Object-Oriented
Software Systems, 2000

7. Pham H. Software Reliability, Springer, 2000
8. Schneidewind N.F. Life Cycle Core Knowledge Requirements for Software Reliability

Measurement, The R & M Engineering Journal, Volume 23 No. 2, June 2003
9. Schneidewind N. F. Software Quality Control and Prediction Model for Maintenance, Annals

of Software Engineering 9, 2000
10. Simao R., and Belchior A. Quality Characteristics for Software Components: Hierarchy and

Quality Guides, in Component-Based Software Quality: Methods and Techniques,
LNCS 2693, pp. 188-211, 2003

11. Szyperski C. Component Software Beyond Object-Oriented Programming, Addison-Wesley
and ACM Press, 2002

12. Teodorescu L., Ivan I. Managementul calităţii software, INFOREC Publishing House, Bucharest,
2001

1 Codifications of references:
[CHIL04] Chillarege R., Kao W., Condit R. Defect Type and its Impact on the Growth Curve,

Proceedings International Conference on Software Engineering, May 2004
[CRIS03] Cristescu M. Modelarea fiabilitatii sistemelor de programe, PhD. Thesis, Bucharest, 2003
[DAVI03] Davis A.M. Software Requirements: Objects, Functions, and States, Prentice-Hall, Saddle

River, New Jersey, 2003
[GORO97] Goron S. Fiabilitatea softului, RISOPRINT Publishing House, Cluj-Napoca, 1997
[IVAN03] Ivan I., Saha P. Quality characteristics of The Internet Applications, in DIGITAL ECONOMY

- The Proceedings Of The Sixth International Conference On Economic Informatics, Bucharest,
May 2003

[KICM00] Kim S., Clark J.A. and McDermid J. A. Class mutation: mutation testing for object-oriented
programs, in Proceedings of the NetObjectDays - Conference on Object-Oriented Software
Systems, 2000

[PHAM00] Pham H. Software Reliability, Springer, 2000
[SCHN03] Schneidewind N.F. Life Cycle Core Knowledge Requirements for Software Reliability

Measurement, The R & M Engineering Journal, Volume 23 No. 2, June 2003
[SCHN00] Schneidewind N. F. Software Quality Control and Prediction Model for Maintenance,

Annals of Software Engineering 9, 2000

Reliability and Quality Control – Practice and Experience

30

[SIBE03] Simao R., and Belchior A. Quality Characteristics for Software Components: Hierarchy and

Quality Guides, in Component-Based Software Quality: Methods and Techniques, LNCS 2693,
pp. 188-211, 2003

[SZYP02] Szyperski C. Component Software Beyond Object-Oriented Programming, Addison-Wesley
and ACM Press, 2002

[TEOD01] Teodorescu L., Ivan I. Managementul calităţii software, INFOREC Publishing House,
Bucharest, 2001

