

Reliability and Quality Control – Practice and Experience

38

SOFTWARE QUALITY VERIFICATION
THROUGH EMPIRICAL TESTING

Ion IVAN1
PhD, University Professor, Department of Economic Informatics
Academy of Economic Studies, Bucharest, Romania
Author of more than 25 books and over 75 journal articles in the field of software quality
management, software metrics and informatics audit. His work focuses on the analysis of
quality of software applications.
E-mail: ionivan@ase.ro , Web page: http://www.ionivan.ro

Adrian PIRVULESCU
BRD - Groupe Société Générale, Bucharest, Romania
Bachelor Degree in Economic Computer Science from
Academy of Economic Studies, Bucharest, Romania

E-mail: u4adrian@yahoo.com

Paul POCATILU
PhD, University Lecturer, Department of Economic Informatics
Academy of Economic Studies, Bucharest, Romania

E-mail: paul.pocatilu@ie.ase.ro

Iulian NITESCU
Student of Faculty of Cybernetics, Statistics and Economic Computer Science,
Academy of Economic Studies, Bucharest, Romania

E-mail: iulian.nitescu@yahoo.com

Abstract: Included is research that contributes to raising the quality of programs written in
C/C++. Empirical testing was tackled. The empirical nature is characterized by the partial
quality of its elements, the absence of systematic behavior in the process and the idea of
random attempts at program behavior. Empirical testing methods are used the program as a
black box view, as well as for the source code. Software testing at source level pursues raising
the tree-like coverage associated with the code. There are known indicators for quantifying the
test methods and measuring their efficiency upon programs by an empirical approach, as well
as measuring the program quality level.

Key words: software testing; empirical measurements; software quality; indicators

Reliability and Quality Control – Practice and Experience

39

1. Introduction

This section presents fundamental concepts for software testing.
The objective for testing is to establish the unconformities between the specification

and the final software product. The performance of the product is brought out by more
comprehensive testing, if the product is well constructed. If the software product is not well
constructed, the depth of testing brings out deficiencies in the source code.

Included in the test objectives is testing whether or not all the data is read. If we
have a file with n articles, we have to check whether all the n articles are read. If we have a
matrix with m lines and n columns, we check whether the m lines and n columns are used in
calculations and if the m * n elements are also used in calculations. For partial testing, lists
of elements that are not part of the processing process are constructed.

The test has to establish if the processing is done as stated in the specifications. The
processing algorithm implies a series of steps. The test checks whether for each element in
the file, matrix or sequence, all the steps are applied.

The testing methodology has the particularity of checking whether the processing is
complete and correct. There is a series of control keys. Intermediate and final results are
checked to see if the imposed criteria are satisfied.

Through the testing process all the unconformities between what the software
product has to offer and what is written in its specification are established. In practice, the
following situations are encountered:

 correct specification, correct software; the analyst understood the problem at
hand and the formalized definition included in the specification is correct and
complete; the programmers have followed the criteria in the specification and
each part in the specification has a correspondence to a module or code
sequence in the program;

 correct specification, incorrect software; the analyst understood the problem at
hand and the formalized definition included in the specification is correct and
complete, but the programmers did not follow the criteria in the specification;

 incorrect specification, correct software; the analyst did not understand the
problem at hand and the specification definition is incorrect or incomplete; the
programmers intervened upon the specification requirements, thus the final
program is correct;

 incorrect specification, incorrect software; the analyst did not understand the
problem at hand and the specification definition is incorrect or incomplete; the
programmers have followed the criteria in the specification and each part in the
specification has a correspondence to a module or code sequence in the
program resulting in the program functioning incorrectly or incompletely.

In all cases, the testing re-establishes the truth, for the purpose of bringing the
software product back on track towards the defined development, for the objective it was
made.

Syntax errors appear during compilation. These are grouped on different levels -
from warnings to fatal errors. Construction errors appear at link editing, runtime and result
interpretation. Empirical testing has a partial behavior and is carried out in the following
stages: analysis, projection, programming and module integration. Empirical testing is an
auto-validation process as well as a global process. Disadvantages of empirical testing are

Reliability and Quality Control – Practice and Experience

40

related to the work volume and the impossibility of improving over a certain limit of software
quality.

Empirical testing is carried out by the program makers and then by the program
users. As a starting point, it has input data and expected results. In the case where there are
correlations between results (unvaried elements), empirical testing will have to emphasize
the extent to which these correlations are made.

Empirical testing can be oriented towards a positive aspect, which emphasizes what
the program computes, or the extent to which the program computes what it was meant to,
or a negative aspect, in which case the control examples are chosen in a way that will bring
out what the program doesn’t do. Control examples that make up the empiric lot for testing
reflect the testing process developer’s capacity.

Empirical testing is necessary for software products sold on key, without clear
documentation or those belonging to a class that doesn’t include rigorous testing. Also,
empirical testing is specific in those situations where the user always solves the desired
problems with the same data structures and there are no variations to the size and data
grouping accuracy. Empirical testing is not specific to software development, integration and
reusing.

Any problem to be solved can be expressed by different levels of complexity. Each
level has a specific volume and an input data structure. Empirical testing does not assume a
gradual approach, complete to those levels, but the introduction of test examples, in the
extent to which these appear in books, sale of products or by partially copying files from an
extended database. The test examples are the actual problems to be solved.

If the multitudes of test examples are systematically constructed form a mosaic, the
empirical test examples can be compared to a mosaic that is missing enough plates.
However, the theme, subject and characters can be intuited or reconstructed.

The classical approaches looking at software testing from (Myers GJ, 1979; Beizer
B, 1990), as well as Hutcheson ML 2003; Patton R. 2001), touch on the empirical nature of
software testing.

In (Ivan I, Pocatilu P 1999), empirical testing was looked at from the programs as
black boxes view, without taking into account the source code. In (Ivan I, Teodorescu L,
Pocatilu P, 2000), research results are presented on the way in which software quality can be
improved through testing.

This article develops empirical testing on software and shows the way in which,
through empirical testing, the quality level of software is influenced. For measuring these
levels, indicators are proposed for quantifying the testing process, as well as for measuring
the quality level associated with the program.

In the article there is research done through the CNCSIS Framework for the
estimation of object oriented prototypes software testing costs and Models for the estimation of
e-business application’ s costs grants.

Section 2 looks at empirical testing of software through the black box prism. In
section 3 we look at empirical testing at the source code level. In section 4, methods for
quantifying the testing process are presented. Section 5 is dedicated to measuring software
quality. Section 6 presents a series of experimental results obtained by the authors.
Conclusions for the research carried out are presented in section 7.

Reliability and Quality Control – Practice and Experience

41

2. The black-box approach to programs

The program has to be viewed as a black-box (Fig. 1). From documentation, from
the way in which interfaces are conceived, comes the input data structure. The way in which
processing is done, what processing is done, what the secondary effects are, do not
represent an essential part of empirical testing.

Program

I E

Figure 1. The program viewed as a black-box

The objective of empirical testing is showing that the program is good, working or
not good, in which case the situations where the program does not offer required results are
identified.
Empirical testing in the case of the black bock approach is concentrated upon the following
three important areas:

 input data level
 processing level
 output data level (results).
The input data level is used to check if the program accepts as input data, data that

defines the problem. Situations are identified where the demand of data exceeds the supply,
the demand is less than the supply and in the best case, where there is equality between
what the programs wants as input and what is offered.

At the processing level, all the algorithm steps are completely traversed, with an
interruption at a certain point of execution or in different points, with connections between
offered data and the point at which interruption occurs.

At output level – program results – what is wanted is the identification of structurally
incomplete results, structurally complete results but incorrect, and also, the situation where
results are good qualitatively without being able to further comment upon their effective
correctitude.

In the case where the program is considered as a black box, it is imperative to carry
out a study on the qualitative nature of the processing level, as there is no access to the
program components, to the algorithms.

Numerous programs computing economical problems (accounting books, forecasts)
for variables such as Gross National Produce (GNP), price (Pr), would only have to deal with
strictly positive numbers. This is why the appearance of negative or null values in a forecast
model for estimating GNP or Pr indicates the existence of some processing errors, or errors
in the conceptual scheme of the model.

The black box associated with the program allows the bookkeeping of the
functional part of the program - what processing is carried out, what processing is not
carried out or is not correctly carried out.

For example, the program PRELM is considered, which carries out a series of
processes leading to a matrix with a particular structure (Fig. 2).

Reliability and Quality Control – Practice and Experience

42

Figure 2. Resulting matrix for the PRELM program

For the following set of input data: a=1, b=2, c=3, x=10, y=11, u=100 and

w=110, if program P displays a table, the first things to check are:
 if the 4th order identity sub-matrix exists in the upper left corner of the matrix;
 if the 5th column is populated exclusively by the a value;
 if the 3rd order null sub-matrix exists in the bottom right corner;
 if -1 is on the 2nd column on lines 5 to 8;
 if on line 1, columns 6 and 7, there are values for x, respectively y, and in the 8th

column there is their sum;
 if on line 2 and 3, columns 6 and 7 there is the u value, respectively w, on the 8th

column, line 2 there is their sum, and their difference should be on column 8,
line 3;

 if 1 is on the 4th column, line 5, and 0 on lines 6, 7 and 8;
 if on the 1st column, on lines 5, 6, 7 and 8 there is the a value multiplied by 4, 3,

2, respectively 1;
 if on column 3, lines 5, 6, 7 and 8 there are values for 1/a, 2/a, ¾, respectively

4/a.
Not knowing the program, the control examples are collected randomly, at most

introducing the criteria for the currently appearing situation (in the processing) frequency. At
first these control examples have small dimensions, to permit manual verifications. For
example the function that computes the inverse of a matrix will be called with a 4 lines by 4
columns matrix as input data. In the absence of possibilities for verifying A*A-1=U, where:

 A is the matrix to invert;
 A-1 is the inverse of A;
 U is the identity matrix (or unit matrix)

the example is either taken from a book where values for A and A-1 have been presented, or
is constructed ad-hoc.

Empirical testing also takes into account examples of specific situations. Coming
back to the inverse of a matrix function, the input is supplied as a matrix with two identical
lines and the behavior of the program is examined.

Reliability and Quality Control – Practice and Experience

43

In the case where program P is integrated into an application for current usage,
empirical testing consists of constructing copies of files that are already being exploited and
extracting/actualizing information from these copies (Fig. 3). In this case the current
database is protected, eliminating the risk of uncontrolled deterioration of it.

Fn

F2
…

Fj

F1

Fi
Copying

P Result

Testing

Assembly of
existent files

Figure 3. Empirical testing of a program to integrate into an application in current use

Empirical testing has to be carried out so that is can produce sufficient information

that will lead to accepting or rejecting the use of this program for current use.
The program viewed as a black box is appreciated for carrying out the desired

processing or not doing so. For the multitude of test examples considered, appreciation by
Yes or No will suffice. Weighted percentages for correct results and total number of program
runs are also described.

Consider the program that carries out certain tasks and the following test
examples: E1, E2, ..., En. After running the program with test data, in k situations correct
results were obtained, and in k-n situations incorrect results were obtained. If the k-n test
examples, in which incorrect results were obtained, belong to a limited group of topologies,
it can be concluded that the k situations cover a diverse and large enough area of different
problem types. However, if the k examples belong to a single group of problems then it can
be concluded that the program cannot cover a wide enough area of situations.

In the case where the specifications were not correctly understood, the basis for
describing the algorithm was incorrect, but the program is accepted even though in reality
the results are not 100% accurate because of erroneous foundations (specifications). When
the results printed in books are incorrect, even though the program is correct, it may be
rejected.

3. Structural approach to programs

Any construction can have a graph structure associated with it in which the nodes
are instructions, sequences of instructions or procedures. The arcs show the succession of
instruction execution, and succession of procedures.

Reliability and Quality Control – Practice and Experience

44

There are situations where tree structures are associated with programs. In figure 4,
there is a representation of the PMIN4 program tree structure, whose objective is to
determine the minimum value between a, b, c and d.

 a>b
 no yes

 a>c b>c

 no yes no yes

 a>d c>d b>d c>d
 no yes no yes no yes no yes

 min=a min=d min=c min=d min=b min=d min=c min=d

Figure 4. Tree structure associated with the PMIN4 program for
choosing the minimum element.

Consider the program PGEN2M written in C/C++ that generates two matrixes and

prints them on the screen:

void main()
{
 int i,j,n,x[10][10],y[10][10];

printf("n=");
scanf("%i",&n);
for (i=0;i<n;i++)
 for (j=0;j<n;j++)
 {

x[i][j]=i+j;
 y[i][j]=i*j;

 }
 for (i=0;i<n;i++)

for (j=0;j<n;j++)
 printf("%i ",x[i][j]);
for (i=0;i<n;i++)

 for (j=0;j<n;j++)
 printf("%i ",y[i][j]);

 }

The graph associated with PGEN2M is represented in figure 5.

Reliability and Quality Control – Practice and Experience

45

R e a d n

i= 0

i< n

j= 0

y e s

j< n

y e s

jixij +=

jiyij ∗=

j= j+ 1

i= i+ 1

n o

n o

i= 0

i< n

j= 0

j< n

y e s

y e s

p r in t i jx

j= j+ 1

n o

i= 0

n o

i= i+ 1

i< n

y e s
j= 0

j< n

p r in t i jy

j= j+ 1

i= i+ 1

n o y e s

n o

s to p

Figure 5. The graph associated with PGEN2M that generates two matrixes

To completely test the program means to define test data that will pass by every
node in the graph at execution. In the above example, for 1 ≤ n < 10 all the nodes in the
graph are visited. If the condition 1 ≤ n < 10 is true, for values n<1 and n ≥ 10, the error
part in figure 6 is traversed.

Reliability and Quality Control – Practice and Experience

46

read n

 1≤ n < 10
 no yes

Error
message

 CODE

Figure 6. Program sequence for validating that variable n is within the limits

If a software product is organized on modules arranged in a tree-like structure (Fig.

7), to test the product would mean to define such sets of test data that will activate all
branches of the tree, line by line.

Figure 7. Software organized in modules

The multitude of paths for the program in figure 7 is:
 d1: {M0,M1,M4}
 d2: {M0,M1,M5}
 d3: {M0,M2}
 d4: {M0,M3,M6}
 d5: {M0,M3,M7}
 d:6 {M0,M3,M8}.
In the situation where a software product has a different structure than the tree-like

one, through adequate transformations a tree structure is obtained. For example, in figure 9,
by the multiplication of the M4 module, a tree structure is obtained starting from the one in
figure 8.

Figure 8. Graph structure of software product

Reliability and Quality Control – Practice and Experience

47

Figure 9. Tree structure obtained by the multiplication of the module

Even in the case of structures where there are conditional loops, a tree structure is

assigned using conventions for processing the cyclic behavior. For example, the graph

associated with the program that evaluates the expression }{min
20 ii

xe
≤≤

= is shown in figure

10.

 i=0

 e= ix

 i≤ 2

 no yes

 ix > 1+ix
 no yes

 e= 1+ix

 i=i+1

 write e

 stop

Figure 10. Graph with tree structure with known number of loops

For the graph with a known number of loops from figure 10, the tree structure
associated with it is presented in figure 11. The arcs represented by dotted lines are the non
activated instructions of the program.

Reliability and Quality Control – Practice and Experience

48

 i=0

 e= ix

 i ≤ 2
 no yes

 write e e > 1x
 no yes

 stop i=i+1 e = 1x

 i ≤ 2 i=i+1

 no yes
 e > 2x i ≤ 2

 write e no yes
 no yes
 write e e = 2x write e e > 2x
 stop no da yes

 stop write e stop write e e = 2x

 stop stop write e

 stop

Figure 11. Tree structure corresponding to a finite number of loops

For an unknown number of loops, corresponding to the following sequence:

 s=0;
 for (i=0;i<n;i++)
 s+=x[i];
 printf("%i",s);

the resulting structure is as shows in figure 12.

Reliability and Quality Control – Practice and Experience

49

 s=0

 i<n
 no yes
write s
 s+=x[i]

 i++

 i<n
 no yes

 write s s+=x[i]

 i++

 i<n

 i<n
 no yes

 write s s+=x[i]

 i++

 write s

Figure 12. Tree structure representing an undefined number of loops

Working on a tree structure allows for carrying out more complete testing.
Programs that solve more complex problems in economics, industry, transportation and
commerce have a lot of levels, and the number of leafs for the tree structure is of the order
of thousands, which in turn means generating test data in the order of thousands.

4. Quantifying testing processes

Consider a tree structure S associated with program P, organized on k levels. At the
first level, the root level, there is a single node n1. At the second level there are n2 nodes, at
the third level there are n3 nodes, and so on. On the last level, where the leafs are, the
number of nodes is nk.

The total number of nodes NT associated with the structure is therefore:

∑
=

=
k

i
iT n N

1

Reliability and Quality Control – Practice and Experience

50

The number of data sets Nset represents an important indicator because it offers an
overview on the volume of processing specific to the testing.

The diversity of test sets Dset is an indicator that shows the measure of how the
testing process has the capacity to cover an area as wide as possible of the tree. There is a
maximum diversity and a relative diversity. The maximum diversity Dmax represents the
number of leafs in the tree. The relative diversity Drel is defined as:

maxD
DD set

rel =

If Drel converges to 1, it means that the testing process is complete.
The testing level Lt shows the position of the last node in the tree reached. Lmax

represents the level at which the leafs of the tree are situated. The relative level Lrel shows
the degree of depth traversal of the tree:

maxL
LL t

rel =

The degree of coverage Ga shows the weighted percentage of nodes from the tree
reached in the testing process Na in the total number of nodes NT of the tree structure:

T

A
a N

NG =

The relative activation frequencies of leafs in the tree structure are tightly tied to the
specifics of the problem to be solved.

For the tree structure in figure 13, the leafs a, b, c, d and e have the activation
frequencies fa, fb, fc, fd and fe.

bf efdfcfaf

Figure 13. Tree structure organized on 3 levels

The weighted coverage degree Gap is calculated as follows:

∑

∑

=

== n

i
i

n

i
ii

ap

f

f
G

1

1
α

Reliability and Quality Control – Practice and Experience

51

where:

 if represents the activation frequency of node i in the tree structure, and

 iα is 1 if node i is activated in the testing process and 0 otherwise.

This indicator assumes an analysis of the input data for the problem that is currently
solved for each beneficiary. The testing process takes into account this information, however,
by limiting resources it has it’s own strategy that only in special cases overlaps with the real
mode of exploitation of the program, as it happens for example when the testing is done for
passenger flights software, for nuclear reactors, for space flights, where risks have a major
significance.

There are a number of ways to interpret the test results. In a first variant, the
concept all or nothing is used. With this method, after testing of program P with data

sets kSDSDSD ,...,, 21 is complete, the qualifier iβ is considered, with 1=iβ (accepted) if for

data set iSD the program P being tested gives correct and complete results, and 0=iβ as

rejected, if after testing program P with iSD data set there are errors. Table 1 is constructed:

Table 1. Test results using the accepted/rejected qualifier for the program

Data set Qualifier β

SD1

1β

SD2

2β

… …

SDi

iβ

… …

SDk

kβ

Total

∑
=

=
k

i
iT

1

β

The ratio
k
TGC = is calculated which corresponds to the weighted percentage of

the data sets whose results were correct. The data sets differ in structure and generate

different effects with respect to the processing. If data set iSD activates certain sequences in

the program with complexity iC , then the ratio

∑

∑

=

== k

i
i

k

i
ii

CP

C

C
G

1

1

β
 is calculated, which allows

for a better overview of the test process.

These indicators are used in section 6 for establishing the way in which program
PEC2 was tested.

Reliability and Quality Control – Practice and Experience

52

5. Software quality planning

The experience in using and developing software products imposes rules on
planning for its quality. There are numerous software products currently in use.

Consider m domains of usage: mDDD ,...,, 21 . Domain iD contains

programs 1iP , 2iP ,…, irP which are permanently used. Each has its own quality level, that is

1iIQ , 2iIQ ,…, irIQ . ijIQ is the aggregate indicator for the quality of program ijP . While

using program ijP the advantages and disadvantages the program has are highlighted due

to the initial quality level the program was endowed with. Consider:

 ef
ijIQ - the effective quality level of program ijP

 pl
ijIQ - the planned quality level of program ijP

 ne
ijIQ - the user required necessary quality level for program ijP .

If ef
ijIQ > pl

ijIQ > ne
ijIQ while the program is in use, the user has a high level of

satisfaction, thus program ijP is offering special facilities or special behaviors, above the

expectations of the user.

If ef
ijIQ > pl

ijIQ = ne
ijIQ , the user is satisfied that the product is functioning with

ef
ijIQ > ne

ijIQ . If ef
ijIQ > pl

ijIQ < ne
ijIQ it means that at the planning stage, the user’s needs

have not been fully studied. If ef
ijIQ < pl

ijIQ < ne
ijIQ , then the situation is at it’s worst.

It follows that experience comes in to correct levels plIQ so

that kt
pl

ijt
pl

ijt
pl

ij IQIQIQ ++ <<<)(...)()(1 . When a new software product is constructed for use

in domain iD at a moment kt + , the demands for kt
pl

ijIQ +)(, rj ,...,2,1= are analyzed, and

decisions are made to work in planning with average or maximum levels.
In the hypothesis where maximum levels are used and in the case

where ne
ij

pl
ij

ef
ij IQIQIQ ≥≥ , for products irii PPP ,...,, 21 , the quality characteristics

rCCC ,...,, 21 are considered, which are measured as in table 2:

Table 2. Measuring effective levels of quality characteristics
Program

1C 2C ...
jC ...

rC

1iP

2iP

… … … … … … …

ikP . . . i
kjα . .

… … … … … … …

irP

Reliability and Quality Control – Practice and Experience

53

In table 2, variables i
kjα , represent the level of quality characteristics jC for

program ikP . The maximum levels are chosen for characteristics { }i
kjrkij αα

<≤
= maxmax where r

represents the number of programs from domain iD . It follows that the planned levels for

the new product are for characteristics rCCC ,...,, 21 , respectively maxmax
2

max
1 ,...,, rααα .

Natural selection principles also apply in the software field.
For the problem on calculating the inverse of a matrix, characteristics C1 –

complexity and C2 – robustness are considered, together with programs 1PX ,

2PX ,..., 10PX , for which data is collected in the following tables:

Table 3. Marks associated with the qualifiers associated with characteristics C1 and C2

Qualifier
i
kjα C1 Qualifier C2 Marks

very high very good 10
high good 7
average satisfying 5

low unsatisfying 2

Qualifiers used for complexity and robustness are presented in table 4.

Table 4. Quality characteristics associated with the program for inverting a matrix

Program 1C 2C

PX1
 10 7

PX2
 5 7

PX3
 7 7

PX4
 2 5

PX5
 5 5

PX6
 10 10

PX7
 7 10

PX8
 5 7

PX9
 7 2

PX10
 7

5

Consider the programs for which the qualifier for complexity is very high or high,

and also for which the qualifier for robustness if very good or good, and then calculate the
mean complexity, and mean robustness. These then become planned levels for the type of
program that deals with inverting matrixes.

For the importance coefficient p1=0.4 associated to complexity and p2=0,6

associated to robustness, the aggregate indicator for quality aC can be calculated for the

ten programs, from which the results in table 5 can be obtained.

Reliability and Quality Control – Practice and Experience

54

Table 5. Aggregate indicator for quality

Program 1C 2C 2211 ** CpCpCa +=

PX1
 10 7 8,2

PX2
 5 7 6,2

PX3
 7 7 7

PX4
 2 5 3,8

PX5
 5 5 5

PX6
 10 10 10

PX7
 7 10 8,8

PX8
 5 7 6,2

PX9
 7 2 4

PX10
 7

5

5,8

On the basis of the aggregate indicator for quality the planned level for program

quality is identified. This means that inside software companies, the program behavior is
noted, so that classes can be made as homogeneous as possible on different problem types,
and to be able to obtain the planned levels.

In the case of some products, their behavior with users is noted, measurements of
effective characteristics are taken, and thus, levels that become planned levels are
associated through similarities to other applications with the same level of complexity or that
are in the same area of usage.

6. Experimental results

For easing the development of the experimental part, the well known problem of
solving a second order equation has been chosen. The testing of any other program is done
in a similar way.

The program considered reads three floating point numbers a, b and c. These are

interpreted as the coefficients for any equation of order <=2 of the form 02 =++ cbxax .
Program PEC2 calculates the solutions to the equation in the case that they exist, complex or
real, or shows a message corresponding to different situations - if the problem doesn’t have
a solution or is undetermined.

The code for program PEC2 is written in C/C++:

#include "stdafx.h"

#include <stdio.h>
#include <math.h>
void ecuatie(float a,float b,float c,float *x1,float *x2,float *re1, float *im1,
 float *re2,float *im2,int *path)
{
 float delta;
 if(a==0)
 if(b==0)
 if(c==0)
 *path=1;
 else
 *path=2;
 else
 if(c==0)
 {
 *x1=0;

Reliability and Quality Control – Practice and Experience

55

 *path=3;
 }
 else
 {
 *x1=-c/b;
 *path=4;
 }
 else
 if(b==0)
 if(c==0)
 {
 *x1=0;
 *x2=0;
 *path=5;
 }
 else
 if (-c/a>0)
 {
 *x1=sqrt(-c/a);
 *x2=-sqrt(-c/a);
 *path=6;
 }
 else
 {
 *im1=sqrt(c/a);
 *im2=-sqrt(c/a);
 *path=7;
 }
 else
 if(c==0)
 {
 *x1=0;
 *x2=-b/a;
 *path=8;
 }
 else
 {
 delta=b*b-4*a*c;
 if(delta>0)
 {
 *x1=(-b+sqrt(delta))/(2*a);
 *x2=(-b-sqrt(delta))/(2*a);
 *path=9;
 }
 else
 if(delta==0)
 {
 *x1=-b/(2*a);
 *x2=*x1;
 *path=10;
 }
 else
 {
 *re1=-b/(2*a);
 *im1=(sqrt(-delta))/(2*a);
 *re2=-b/(2*a);
 *im2=(-sqrt(-delta))/(2*a);
 *path=11;
 }
 }
}

void main()
{
 char s[200], s1[200];
 float a,b,c,x1,x2,re1,re2,im1,im2;
 int path;
 FILE *f, *f1;
 printf("Nume fisier de intrare: ");
 gets(s);

Reliability and Quality Control – Practice and Experience

56

 printf("Nume fisier de iesire: ");
 gets(s1);
 f=fopen(s, "r");
 f1=fopen(s1, "w");
 while (!feof(f))
 {
 fscanf(f,"%f %f %f", &a, &b, &c);
 ecuatie(a,b,c,&x1,&x2,&re1,&im1,&re2,&im2,&path);
 switch (path)
 {
 case 1: fprintf(f1, "Nedeterminare\n");break;
 case 2: fprintf(f1, "Ecuatia nu are solutii\n");break;
 case 3: fprintf(f1, "%f\n",x1);break;
 case 4: fprintf(f1, "%f\n",x1);break;
 case 5: fprintf(f1, "%f %f\n",x1,x2);break;
 case 6: fprintf(f1, "%f %f\n",x1,x2);break;
 case 7: fprintf(f1, "%fi %fi\n",im1,im2);break;
 case 8: fprintf(f1, "%f %f\n",x1,x2);break;
 case 9: fprintf(f1, "%f %f\n",x1,x2);break;
 case 10:fprintf(f1, "%f %f\n", x1,x2);break;
 case 11:printf(f1,"%f+%fi%f+%fi\n",re1,im1,re2,im2);break;
 }
 }
 fclose(f);
 fclose(f1);

}

The tree structure in figure 14 is associated to program PEC2:

Read a

a==0

b==0 b==0

c==0

noyes

Read b

Read c

yes no

c==0

yes no

UndeterminedEq. Doesn’t have
solution

yes no

x1=0

x1=-c/b

Write x1

yes no

c==0 c==0

yes no

x1=0

x2=0

-c/a>0

yes no

x1=sqrt(-c/a)

x2=-sqrt(-c/a)

x1=sqrt(c/a)*i

x2=-sqrt(c/a)*i

noyes

x1=0

x2=-b/a

D=b*b-4*a*c

D>0

noyes

x1=-b+sqrt(D)
/2*a

x2=-b-sqrt(D)
/2*a

D=0

noyes

x1=-b/2*a

x2=x1

x1=-b+i*sqrt(-D)
/2*a

x2=-b-i*sqrt(-D)
/2*a

Path 1 Path 2

Path 3 Path 4

Path 5

Path 6 Path 7

Path 8

Path 9

Path 10 Path 11

Write x1

Write x1,x2

Write x1,x2 Write x1,x2

Write x1,x2

Write x1,x2

Write x1,x2 Write x1,x2

Figure 14. Tree structure associated with program PEC2 for calculating the solution to a

second order equation.

Reliability and Quality Control – Practice and Experience

57

The tree structure has k =12 levels. The number of nodes for each level is 1n =1;

2n = 1; 3n = 1; 4n =1; 5n =2; 6n =4; 7n =8;
8n =7; 9n =6; 10n =5; 11n =3; 12n =2. The

total number of nodes is TN =31 nodes and there are 11 paths corresponding to the 11

leafs.
The complexities of the paths from the root to the leafs are calculated using

Halstead’s formula: 222121 loglog nnnnC += , with 1n = number of operands and 2n =

number of operators. The total complexity TC , is calculated as a sum of the complexities for

all the paths. In table 6 there are complexities calculated for each path.

Table 6. Complexities of paths for program PEC2
 Path Complexity
path1

 48
path2 52,53
path3 71,27
path4 91,36
path5 91,13
path6 150,84
path7 145,04
path8 112,11
path9 282,21
path10 250,92
path11

 413,19
Total 1708,6

For the test process to be complete, it is necessary for the relative diversity of the

data sets relD to be 1, which means that the diversity of test sets setD has to cover the

maximum diversity corresponding to the number of leafs. For example, if the test data sets
from table 7 are considered, these cover the whole tree area, so that the degree of coverage

aG is 100%. In this case, the degree of depth traversal relL is equal to 1.

Table 7. Test data sets associated to program PEC2

Data set Associated values
SD1

 (0,0,0)

SD2
 (0,0,7)

SD3
 (0,5,0)

SD4
 (0,2,4)

SD5
 (1,0,0)

SD6
 (1,0,-3)

SD7
 (2,0,1)

SD8
 (1,2,0)

SD9
 (1,-1,-2)

SD10
 (1,2,1)

SD11
 (1,1,1)

For calculating the weighted degree of coverage apG , the activation frequencies of

the tree leafs have to be settled. For this, state variables are introduced into the program,

Reliability and Quality Control – Practice and Experience

58

which count the activation of leaf nodes. These indicators show to what extent the program
testing is conclusive.

To accomplish the program testing, the test data sets are read from a text file as
input, and the obtained results are saved in an output text file. A complete test for an
application is impossible to accomplish both theoretically and practically. Tests that maximize
the probability of discovering important processes in the application have to be devised.

To accomplish the program testing, the test data sets are read from a text file as
input, and the obtained results are saved in an output text file. The obtained results by
running the program with the data from table 7 are presented in figure 15.

Figure 15. Results obtained from running PEC2 with the considered test data

The test is run, and table 8 results:

Table 8. Results from testing program PEC2

Data set Qualifier β Complexity

SD1
 1 48

SD2
 1 52,53

SD3
 1 71,27

SD4
 1 91,36

SD5
 1 91,13

SD6
 1 150,84

SD7
 1 145,04

SD8
 1 112,11

SD9
 1 282,21

SD10
 1 250,92

SD11
 1 413,19

Total 11 1708,6

The weighted indicator CG is calculated for data sets whose results have been

correct using the qualifier accepted/rejected and the indicator CPG on the basis of path

Reliability and Quality Control – Practice and Experience

59

complexity, thus the level of program quality results. On the basis of the results we have

CG = CPG = 1, which means that the test is correct and complete.

7. Conclusions

The software quality of input data, results, processes, is emphasized by testing.
Empirical testing has a special role because it is the only way to check the quality of very
complex software applications. At present there is a lack of software to assist the symbolic
testing for such applications. The correctness is automatically emphasized for very restrictive
classes of applications.

Empirical testing is the practitioner’s instrument for seeing how good or how bad a
software product, database or the result of his/her application is. The only thing that needs
to be done is to find techniques and methods based on empirical testing, that are built in
such a way as to maximize the efficiency of the software testing process.

The empirical nature is characterized by partial quality of its elements, the absence
of systematic behavior in the process and the idea of random attempts of program behavior.

The accumulated experience and joining the effort with the test results are the
fundamentals of improvement in empirical testing. The dynamic behavior is concerned with
the number of data sets, their diversity, and the summation of transformations that are
produced in the testing process to obtain as much information as possible about the quality
of the application.

In the future, experimental results and data series from tests will have to be
included in models for software and database costs.

Empirical testing is at the hands of all users. Beta versions of software products are
empirically tested on a very large user base.

Empirical testing was used in research for an informatics system for crediting
operations in a bank. This system had a very high complexity.

References

1. Beizer, B. Software Testing Techniques – Second Edition, Van Nostrad Reinhold, New York,

1990
2. Cazan D., Ivan I. Metrici de calitate ale sistemelor informatice, Revista Informatica

Economica, vol. 8, nr. 3, pp.123—128, September 2004
3. Chan, W. K., Chen T. Y., Tse, T. H. An Overview of Integration Testing Techniques of

Object-Oriented Programs, Proceedings of the 2nd ACIS Annual International
Conference on Computer and Information Science, (ICIS 2002), Mt. Pleasant,
Michigan, 2002

4. Chen, T.Y., Yu, Y.T. On the expected number of failures detected by subdomain testing and
random testing, IEEE Transactions on Software Engineering, vol. 22, No. 2, February
1996, pp 109--119.

5. Hutcheson M.L. Software Testing Fundamentals: Methods and Metrics, John Wiley & Sons,
2003

6. Ivan, I, Pocatilu, P. Testarea Software Orientat Obiect, Editura INFOREC, Bucharest, 1999
7. Ivan, I., Popescu, M., Sinioros, P., Simion, F. Metrici Software, Editura INFOREC, Bucharest, 1999
8. Ivan, I., Teodorescu, L., Pocatilu, P. Cresterea calitatii software prin testare, Revista Q-media,

vol. 2, nr. 5, pp. 20—24, 2000

Reliability and Quality Control – Practice and Experience

60

9. Ivan, I., Pocatilu, P., Stanca, C., Mihai, T. Data Certification, Proceeding of the 2000 MIT
Conference on Information Quality, 2000

10. Ivan, I., Pocatilu, P., Sinioros, P. Testarea aplicatiilor de e-business, Proceedings of SIMPEC
2000 International Conference, vol. 2, Brasov, Transylvania University, pp. 172—177,
November 2000

11. Ivan, I., Toma, C. Testarea interfetelor om-calculator, Revista Romana de Informatica si
Automatica, vol. 13, nr. 2, pp. 22—29, 2003

12. Ivan, I., Pocatilu, P. Testarea automata a aplicatiilor software specializate, Revista
Informatica Economica, vol. VIII, nr. 2, pp.116—120, June 2004

13. Ivan, I., Boja, C. Metode statistice in analiza software, Editura ASE, Bucharest, 2004
14. McGregor, J.D. Quality Assurance: An overview of testing, Journal of Object-Oriented

Programming, vol.9, No. 8, 1997
15. McGregor, J.D. Testing – Is It a Phase, an Activity or a Lifestyle?, Journal of Object-Oriented

Programming, Vol. 13, No. 1, March/April 2000, pp. 36--39
16. Myers, G. J.The Art of Software Testing, John Wiley & Sons, New York, 1979
17. Myers, G. J. The Art of Software Testing, Second Edition, Revised and Updated by Tom

Badgett and Todd M. Thomas with Corey Sandler, John Wiley & Sons, 2004
18. Olaru, M. Managementul calitatii, Editura Economiaă, Bucharest, 1999
19. Pocatilu, P., Ungureanu, D. Managementul procesului de testare software, Revista Romana

de Informatica si Automatica, vol. 13, nr. 2, 2003, pp. 15-21
20. Pocatilu, P. Costurile testarii software, Editura ASE, Bucharest, 2004
21. Pocatilu, P. Testarea programelor Java cu JUnit, Informatica Economica, vol. IX, nr. 2(34),

2005, pp. 51-55, June 2005
22. Pocatilu, P. Using test cases in distributed application testing, in Proceedings of SIMPEC 2005

International Conference, Brasov, May 20-21, 2005, pp. 255--261
23. Patton, R. Software testing, SAMS Publishing House, USA, 2001

1 Ion IVAN has graduated the Faculty of Economic Computation and Economic Cybernetics in 1970, he holds a PhD
diploma in Economics from 1978 and he had gone through all didactic positions since 1970 when he joined the
staff of the Bucharest Academy of Economic Studies, teaching assistant in 1970, senior lecturer in 1978, assistant
professor in 1991 and full professor in 1993. Currently he is full Professor of Economic Informatics within the
Department of Economic Informatics at Faculty of Cybernetics, Statistics and Economic Informatics from the
Academy of Economic Studies. He is the author of more than 25 books and over 75 journal articles in the field of
software quality management, software metrics and informatics audit. His work focuses on the analysis of quality of
software applications. He is currently studying software quality management and audit, project management of
IT&C projects. He received numerous diplomas for his research activity achievements. For his entire activity, the
National University Research Council granted him in 2005 with the national diploma, Opera Omnia.
He has received multiple grants for research, documentation and exchange of experience at numerous universities
from Greece, Ireland, Germany, France, Italy, Sweden, Norway, United States, Holland and Japan.
He is distinguished member of the scientific board for the magazines and journals like:
- Economic Informatics; - Economic Computation and Economic Cybernetics Studies and Research; - Romanian
Journal of Statistics
He has participated in the scientific committee of more than 20 Conferences on Informatics and he has coordinated
the appearance of 3 proceedings volumes for International Conferences.
From 1994 he is PhD coordinator in the field of Economic Informatics.
He has coordinated as a director more than 15 research projects that have been financed from national and
international research programs. He was member in a TEMPUS project as local coordinator and also as contractor
in an EPROM project.

