

Reliability and Quality Control – Practice and Experience

1

OPTIMAL REDUNDANCY ALLOCATION
 FOR INFORMATION MANAGEMENT SYSTEMS

Cezar VASILESCU1
PhD, Associate Professor
National Defense University, Bucharest, Romania

E-mail: caesarv@crmra.ro

Abstract: Reliability allocation requires defining reliability objectives for individual subsystems
in order to meet the ultimate goal of reliability. Individual reliability objectives set for software
development must lead to an adequate ratio of time-length, level of difficulty and risks, as well
as decrease development process total cost.
Thus, redundancy ensures meeting the reliability request by introducing a sufficient quantity of
spare equipment. But in the same time, this solution leads to an increase in weight, size and
cost.
The aim of this paper is the investigation of reliability allocation to specific sets of software
applications (AST) under the circumstances of minimizing development and implementation
costs by using the Rome Research Laboratory methodology and by complying with the
conditions of costs minimization triggered by the introduction of redundancies [GHITA 00].
The paper analyses the ways in which the software reliability allocation gradual methodology
can be extended. It also analyses the issue of optimal system design in terms of reliability
allocation by using instruments of mathematical programming and approaches the variation of
reliability and system cost by taking into account the redundancy introduced in the system.
This paper is also going to provide an example of calculus which uses a representative
software system and illustrates the methodology of optimal allocation of specific sets of
software applications reliability.

Key words: Reliability allocation; Optimal redundancy; Increase of software applications
reliability; Application software tools

Introduction

Reliability allocation requires defining reliability objectives for individual subsystems
in order to meet the ultimate goal of reliability. Individual reliability objectives set for
software development must lead to an adequate ratio of time-length, level of difficulty and
risks, as well as decrease development process total cost.

Thus, redundancy ensures meeting the reliability request by introducing a sufficient
quantity of spare equipment. But in the same time, this solution leads to an increase in

Reliability and Quality Control – Practice and Experience

2

weight, size and cost. In this respect, software reliability allocation gradual methodology
[ROME 97]2 can be extended to include the approach used in [GHITA 96]. The latter analyses
the issue of optimal system design in terms of reliability allocation by using instruments of
mathematical programming and approaches the variation of reliability and system cost by
taking into account the redundancy introduced in the system.

Consequently, the aim of this paper is the investigation of reliability allocation to
specific sets of software applications (AST) under the circumstances of minimizing
development and implementation costs by using the Rome Research Laboratory
methodology and by complying with the conditions of costs minimization triggered by the
introduction of redundancies [GHITA 00].

Before proceeding any further some theoretical clarifications are needed. Firstly,
reliability allocation as viewed by [ROME 97] refers to allotting reliability specifications at
system level to software module level (be there a non-redundant configuration). Reliability
allocation as viewed by [GHITA 00] refers to the optimal allocation of redundancy in order to
reach the reliability level set through reliability specifications. In conclusions, the
complementarity of the two approaches is worth mentioning.

Secondly, within the context of information management systems, the term
redundancy refers both to the existence of several specific sets of software applications (AST)
developed and designed independently and which have the same functions, and to testing
and upgrading these sets.

All this considered, this paper is also going to provide an example of calculus which
uses a representative software system and which illustrates the idea of the possibility of
merging the two methodologies. Moreover, the conclusion that is to be drawn is that the
modeling of the AST reliability increase by technological means (i.e. by testing and
upgrading the software) and by redundancy is a necessity.

The Increase of Software Applications Reliability through Redundancy

The hypothesis underlying the analysis of the software reliability increase of the
information management systems is that these systems are part of those systems that are
fault-tolerant. In this respect, ‘redundancy’ (viewed as the use within a system of more
elements than necessary for its functioning in order to have the system run flawlessly even in
the presence of breakdowns/failures [SERB 96]) is the basic element that assures the
reliability of these systems. Other elements may concern hardware or software subsystems
and can be traced at any level, starting from individual components up to the whole system
(hardware and/ software).

With regard to reliability, the information management systems software has a
hierarchical functional partition, beginning with the Mission Specific Tools Set (MSTS),
Software Applications sets (AST) and the software modules within them, all of which
including redundant components and mechanisms to reestablish the functioning.

The basic methods from the fault tolerance theory for the hardware field can be
adapted and applied to the software of the information management systems. Thus, in order
to assure its tolerance to failures, encoding logical functions by using redundant codes, error
recognition and error removal by screening faults with the help of multiple (redundant)
software modules installed in different system equipments or functional reconfiguration of

Reliability and Quality Control – Practice and Experience

3

the system by activating a spare software element that is to replace the failed element can
be used.

These methods underlie the suggestions made by the information management
systems designers to use the following basic forms of redundant software architectures
(forms that assure an increase in reliability regardless of the hierarchical functional level -
MSTS, AST, software module):

- The triple modular redundancy. It includes three identical functional modules that
carry out similar tasks. Their results are subject to the process known as ‘voting’ that
screens a possible erroneous functioning of one of the modules.

- Duplication with comparison. It is based on two functional modules that assure
carrying out similar tasks. If due to their parallel functioning results (outputs) differ,
diagnosis procedures are carried out to identify the faulty module.

- Dynamic redundancy. It contains several modules with similar functions. However,
only a part of the functions are operational, whereas the other is on stand-by. When
a failure is identified the ones on stand-by become operational and take over the
tasks of the faulty ones.
All these three basic forms of redundant software architectures are to be found in

the implementation of the specific sets of software applications (AST).
In order to evaluate the latter’s reliability performance this paper starts from the

hypothesis that screening faults is instantaneous and that the faults of the individual copies
of ASTs are independent. Moreover, I am to employ reliability logical models conventionally
represented in a way similar to those specific to the evaluation of the reliability functions for
redundant hardware structures.

The following examples display the evaluation of AST reliability performance using
as bibliography the evaluation of reliability functions of redundant structures [SERB 96].

Example 1
The triple modular redundancy made up of identical ASTs

The triple modular redundancy is made up of three identical ASTs where ()tRAST

is their reliability function and a voter where ()tRV is its reliability function. The reliability

function of the triple modular redundancy can be modeled by starting from the logical
reliability model (fig. 1)

AST2

AST3

AST1

V

RAST(t)

RAST(t)

RAST(t)

RV(t)

Figure 1. The reliability logical model for the triple modular redundancy

Reliability and Quality Control – Practice and Experience

4

For a good functioning of the software system, at least 2 ASTs and the V voter must

function correctly.
The functioning probability of the redundant system under discussion is given by the

general formula [SERB 96] for k-out-of-n systems:

() () ()() ⎥
⎦

⎤
⎢
⎣

⎡
−×= ∑

=

−
n

ki

inii
nV tRtRCtRR 1

which is

() () ()()32 23 tRtRtRR ASTASTV −×=

Example 2
The triple modular redundancy made up of non- identical ASTs

The three ASTs perform the same functions but they are different in terms of design
and implementation. The reliability logical model is similar to the one in fig. 1, with the

observation that the ASTs have different reliabilities which are given the notation ()tR
iAST .

In order to calculate the reliability function the method of exhaustive enumeration
of system states is used. In table 1 the probabilities of correct functioning of the system and
the probabilities associated to these events are presented.

Table 1. The probabilities of good functioning of the system with non-identical ASTs

Seq.
The events assuring the good

functioning
The probability of the event

1. 321 ASTASTAST ∩∩ () () ()tRtRtR ASTASTAST 321
××

2.
−

∩∩ 321 ASTASTAST () () ()()tRtRtR ASTASTAST 321
1 −××

3.
221 ASTASTAST ∩∩

−

() ()() ()tRtRtR ASTASTAST 321
1 ×−×

4.
321 ASTASTAST ∩∩

−
 ()() () ()tRtRtR ASTASTAST 321

1 ××−

The good functioning of the system is assured by joining all four events. They are

incompatible with one another and thus the probability of the good functioning of the triple
modular redundancy is:

() () () () () () () ()()[
() ()() () ()() () ()]

() () () () () () ()[
() () ()]tRtRtR

tRtRtRtRtRtRtR

tRtRtRtRtRtR

tRtRtRtRtRtRtRtR

ASTASTAST

ASTASTASTASTASTASTV

ASTASTASTASTASTAST

ASTASTASTASTASTASTV

321

323121

321321

321321

2-

11

1

××

−×+×+×=

=××−+×−×+

+−××+××=

In the two examples, the modeling of the reliability function of the AST

redundancies does not take into account the instances of error-compensation. Consequently,

Reliability and Quality Control – Practice and Experience

5

the probability of the event to have m failures in 1AST , n < m failures in 2AST , r < n

failures in 3AST and the three ASTs to function:

() () () () () ()
!!! r
ttR

n
ttR

m
ttRP

r

AST

n

AST

m

AST
λλλ

××=

where ()λ is the failure rate of an AST.

There is a number of mnrP permutations for the triple (m, n, r) with a view to

identifying the errors of the three ASTs:

⎪⎩

⎪
⎨

⎧

>>
==

==
=

rnm 6,
rn sau ,3

 ,1
nm

rnm
Pmnr

Each triple is associated with a r,n,mPr conditioned probability defined as:

“The AST system functions correctly if it contains m, n or r errors’, where m can be
set to any value, n < m and r < n.

Consequently, the reliability function of the AST is calculated according to the
relation:

() () () () () () ()

() ()∑∑∑

∑∑∑
∞

= = =

++

∞

= = =

××
=

==

0 0 0
,,

3

0 0 0
,,

!!!
Pr

!!!
Pr

m

m

n

n

r

rnm

rnmmnrAST

r

AST

n

AST
m

m

n

n

r

m

ASTrnmmnr

rnm
tPtR

r
ttR

n
ttR

m
ttRPtR

λ

λλλ

() () () ()

()∑∑∑

∑
∞

= = =

++

∞

=

××
+

++=

1 1 0
,,

1
0,0,00

33
0,0,0000

!!!
Pr

!
PrPr

m

m

n

n

r

rnm

rnmmnr

m

m

mmASTAST

rnm
tP

m
tPtRtRPtR

λ

λ

By acknowledging that for software systems there is an exponential repartition for

run time, for which () t
AST etR λ−= , it results:

()
()∑ ∑

∞

=

∞

=
+==

0 1 !
1

!
1

m m

m

AST m
t

m
t

tR
λλ

or

() ()
()tR

tR
m
t

AST

AST

m

m −
=∑

∞

=

1
!1

λ

By replacing, it results:

() () () ()() () ()∑∑∑
∞

= = =

++

××
+−+=

1 1 0
,,

323

!!!
Pr13

m

m

n

n

r

rnm

rnmmnrASTASTASTAST rnm
tPtRtRtRtRtR λ

Reliability and Quality Control – Practice and Experience

6

Example 3
Dynamic redundancy

Be there a dynamic redundancy made up of two ASTs, a basic (functional) one -
AST1 and a spare one - AST2. The spare AST can be functioning or on stand-by and can be
identical (or not) with the functional one.

The following notations are to be used:

− ()tRAST 1 - the reliability function of the basic AST;

− ()tRAST 2 - the reliability function of the spare functioning AST;

− ()tR rAST 2 - the reliability function of the spare standby AST.

The logical model of the dynamic redundancy is presented in fig. 2.

AST2

AST1

RAST1(t)

RAST2(t)

RC

Figure 2. The logical reliability model of the dynamic redundancy

The dynamic redundancy can successfully function on long-term if the following
events take place:

1. AST1 (basic AST) functions well for the (0, t) time duration; for the probability of this

event we give the notation ()tRAST11Pr = ;

2. AST2 fails at time moment t<ττ where, ; AST (spare AST) is in proper functioning

condition and it works well for the time interval ()t,τ .

The probability of AST failure within the infinite small time interval ()τττ d+, is

() ττ df , and the probability of AST1 at the τ moment and of the AST2 functioning from the

τ moment until the t moment, with AST2 in functioning condition at the τ moment is:

() () () ττττ dtRRf ASTAST R
−

22

If t<< τ0 , the probability of the 2Pr composed event is:

() () ()∫ −=
t

ASTAST dtRRf
R

0
2 22

Pr ττττ

The two events are incompatible. Thus, the probability of a good functioning of the
dynamic redundancy is:

() () () () ()∫ −+=
t

ASTASTAST dtRRftRtR
R

0
221

ττττ

Reliability and Quality Control – Practice and Experience

7

The Optimal Allocation of Application Software Redundancies

The problem of reliability allocation issues during the stage of provisional reliability
evaluation. The paper [GHITA 00] offers solutions for the optimal allocation of reliability for
general situations by tackling the topic of “objects made up component equipments” and
puts forward a way of choosing the type of redundancy that best meets the reliability
requirement.

In what follows I would like to deal with the issue of adapting the methodology of
reliability allocation to the reliability of specific sets of software applications and to present a
methodology- adequate calculation program that would enable solving case studies.

The first thing under consideration is the problem of availability allocation (adapted
after [SERB 96]) if the IT system is designed as a serial connection of (parallel) redundancies
of subsystems.

Usually, system design starts by introducing a minimum number of functionally
necessary equipments in its structure. The resulting structure is, from the reliability point of
view, a serial one. Since serial structures have the lowest reliability, they may not meet
reliability requirements and, consequently, the designer is to increase system reliability
starting from redundancy in the number of elements.

By giving the notation of ()ii mD to the availability of equipment number “i”,

equipment which has "mi" redundant (same type of) equipments and the notation of m=(ml,
m2, ..., mn) to redundancy at product level, where n is the number of equipments, it results
that D(m) is expressed as:

∏
=

=
n

i
iDD

1

Availability calculation ()ii mD depends on the type of redundancy practiced

(redundancy through the design of parallel systems, “r out of n”, or by using spare
equipment).

In the first two alternatives, redundant equipments work under the same conditions
as basic equipment does. On the one hand, that assures a technically easier solution.
However, the issuing reliability is less good compared to the last alternative.

For this alternative of “parallel” redundancy

() 111 +−−= im
ii dD

for mi = 0, it results Di = di

ii

i
id

μλ
λ
+

=

where Di is the availability of an equipment of type “i”.
Through redundancy, the reliability requirements can be met by introducing

enough spare equipment. Nonetheless, weight, size and cost increase.
If we give the notation of C (m) to the cost of redundant equipments within the

system, the latter is calculated as follows:

() ()∑
=

=
n

i
ii mcmC

1
*

where ci is the cost of an equipment of type “i”.

Reliability and Quality Control – Practice and Experience

8

From the cost relation it results that the function increases monotonously as against
any component mi. Of all solutions, the one that meets the reliability condition at the lowest
cost must be chosen.

In conclusion, the problem of the optimal design of the system is formulated as
follows: “of all m redundant solutions, one must find the solution that minimizes the cost
C(m), be there a restriction, in which D= D(m) is calculated in accordance with the relations
above”.

The reliability requests for AST can be expressed as follows:
*PPAST ≥ or

 *
DD KK

AST
≥

where

− ASTP is the probability of good functioning;

− ASTDK is the availability coefficient;

− *P and *
DK are the minimum values of reliability indicators.

The reliability requirement can be thus met by [GHITA 96] [GHITA 00]:

a) increasing system’s components reliability;

b) increasing (improving) system’s reparability;

c) using some reliability redundancies.
The third alternative is going to be discussed in more details in the following

paragraphs.
Usually software design starts from the basic principle of a minimum and

functionally necessary number of modules within the system. Reliability analysis points out
that the latter is a serial structure of low reliability. Reliability increase during the design
stage is done by having a redundancy introduced as far as the number of modules is
concerned.

If ()iiAST mP is the notation for the probability of good functioning of an iAST

that has im redundant modules of the same type and the redundancy at the level of the

whole set of ASTs is given the notation ()nmmmm ..., , , 21= , where n represents the

number of ASTs, it results that ()mPAST is expressed through the relation:

() ()∏
=

=
n

i
iiASTAST mPmP

1
.

Calculating probabilities ()iiAST mP depends on the type of redundancy

employed:
− redundancy by designing systems of parallel software modules;
− redundancy by designing systems of “r out of n” software modules;
− the use of spare software.
The last alternative has the advantage of assuring a reliability increase superior to

the other two for which the systems of redundant software modules work in the same
manner as the basic ones.

Reliability and Quality Control – Practice and Experience

9

The probability of an iAST good functioning for the first two alternatives of

redundancy is:

() ()∑
=

−+
+ −=

n

rk

km
i

k
i

k
miiAST

i
i

PPCmP 1
1 1

where

iP - probability of good functioning of a model of type i;

t
i

ieP λ−= (an exponential repartition law follows);

with iλ - failure intensity of the module type i and t - mission duration.

If r=1 the system is of a parallel type and if r>1 the system is of an r-out- of- n
type. As for the redundancy through spare software modules, each module together with

the im redundant modules forms a kit that fails when the im +1 modules fail.

In this case, the probability to have an exact number of k failures is calculated as
follows:

() () () tk
iii

ietkPkP λλν −=== ,

where

iλ - failure intensity of modules;

iν - number of type i failed modules.

But () ()iiiiAST mPmP ≤= ν , thus resulting the relation:

() () () !/
0

ketmP
i

i
m

k

tk
iiiAST ∑

=

−= λλ

The previous formula is valid if we are to accept the hypothesis according to which
failure and module replacement is instantaneously done through a spare module and that

probability equals 1. By having the calculus formulas the good functioning of iAST analyzed

it results that they are monotonously increasing functions. In conclusion, regardless of the P*
level, there is the possibility of reaching the desired reliability level by including enough
redundant software modules.

()

() 1lim

si 1lim

=

=

∞→

∞→

mP

mP

AST
m

iiAST
mi

However, one observation must be made in this respect: by introducing any
number of redundant software modules within the structure of an AST, its complexity and
cost automatically increase. In all software systems, total cost reduction is an efficiency
criterion unanimously accepted. Consequently, an optimal equilibrium between the desired
reliability for an AST, the number of redundant software modules and the cost of this activity
needs to be reached. In the general concept of “cost” we include the design/ development
costs, software maintenance/ exploitation costs and downtime costs.

By giving the cost of introducing within AST the redundant modules the notation

()mC AST , its value can be estimated as follows:

Reliability and Quality Control – Practice and Experience

10

() ∑
=

=
n

i
iiAST mcmC

1
,

where ic is the cost of a module of type i. From the cost relation it results that the function

increases monotonously as compared with any component.
Figure 3 presents a qualitative graph of reliability and AST cost variation as

compared with the redundancy employed. Each dot on the graph corresponds to a vector m,

and by increasing the number of im components the dots move up and to the right.

The optimal design of the AST is done by selecting the dots that go over P*
(redundant dots that meet the reliability requirement) of the most cost-effective alternative.
Thus, it results that the problem of finding an optimal design solution pertains to
mathematical programming (optimum with restrictions) and that it displays certain
particularities [GHITA 00]:

− it is a problem of non-linear programming - ()mPAST is not a linear function as

compared with argument mi;
− it is a problem of whole numbers programming- arguments mi are whole

numbers.
Consequently, the problem of AST reliability allocation is a problem of whole

numbers non- linear programming that is to be worked out by using specific methods.

Figure 3. Variation of reliability and cost in accordance with the redundancy

In the graph displayed in figure 3 there is a line of dots on the upper side called
dominant vectors and they are optimal solutions as compared with the other dots. Thus the
optimal solution is the first vector from the line of dominant vectors that go over level P*. It
results that identifying the optimal solution is a matter of using the appropriate methods by
which some dominant vectors are obtained.

A vector m’ is called dominant if the following conditions are met:

1. () () () ()'' mCmCmPmP >⇒>

2. () () () ()'' mCmCmPmP ≥⇒=

The identification of the dominant vectors is done by using the functions:

() ()
()kP
kP

c
k i

i
i

1
ln1 +

=ϕ

Reliability and Quality Control – Practice and Experience

11

which evaluate the probability increase per unit of cost for a component with k

redundancies. All procedures are workable if the functions ()kiϕ are convex and for the

previously mentioned structures (r- out- of- n systems or spare ones) ()kiϕ are convex.

The procedure below supplies a line of dominant vectors

() () () ()()kmkmkmkm n ..., , , 21= , k=1, 2, …, N in which

1. m(1)= (0, 0, …, 0)
2. m(k+1) is recurrently deduced as follows

() ()
() () Iidaca 1

Iidaca 11
≠=+
=+=+

kmkm
kmkm

ii

ii

where I is the index number that maximizes function ()kiϕ ; (if there are more

indices I, in order to obtain maximum possible one of them is selected as index I);
3. Algorithm stall results from:

()(){ }*:min PkmPkN ≥=

In conclusion, the procedure leads to a line of dominant vectors deduced one from
the other by adding one unit for each argument that reaches the greatest increase in
probability per unit of cost.

The chain begins with the identical null vector and ends with the first vector that
meets the reliability condition (C). This procedure supplies a chain of dominant vectors that
does not necessarily include all possible dominant vectors between the identical invalid

vector and vector ()km . Consequently, it does not always supply an optimal solution, but a

quasi-optimal one. The procedure has the advantage of completely taking algorithm form
and of being easy to implement on a computer. Its main disadvantage resides in the fact that
it starts from vector (0, 0, ..., 0) and thus a number of steps must be taken towards finding
the first dominant vector that meets the reliability and cost requests.

 A more direct method (with fewer steps) towards obtaining a chain of dominant
vectors is the one recommended in [BARLOW 92] and which involves using one of the
following procedures.
Procedure 1

It is similar to the procedure previously described and it helps determine the whole
chain of dominant vectors by starting from vector (0, 0, ..., 0) and successively introducing
redundancies in accordance with the increase criterion.
Procedure 2

It is an operational alternative that helps determine one dominant vector

()**
1

* ,..., mnnn = that corresponds to the imposed level of probability *P . It is based on the

particularity that lets probability *P be, there is a constant value so that all the components

of the dominant vector *n meet the condition:

() (){ }** :min Pkkn ii δϕ <= .

Since functions ()kiϕ are positive and monotonously decreasing and () 0* >Pδ ,

the previous relation always assures finding components *
in . The advantage of this

procedure consists in directly supplying vector *n that corresponds to the imposed

Reliability and Quality Control – Practice and Experience

12

probability level *P . The disadvantage lies not in offering any clue as to the manner of

choosing the constant value ()*Pδ , which is done through successive trials.

Procedure 3
It consists in joining previous procedures by using their advantages. If a level of

probability *P is imposed, an estimate value for the constant ()*Pδ and its corresponding

dominant vector ()δn are established through successive trials, so that ()() *, PntP <δ by

using procedure 2.

Once ()δn is established, by using procedure 1 the chain of dominant vectors is

established in its turn until the dominant vector *n that meets condition () **, PntP ≥ is

obtained.

Case Study: The Methodology of Optimal Allocation of AST Reliability

In this sub-chapter we give an example that illustrates the methodology of optimal
allocation of AST reliability [VASILESCU 05] by using the optimized method of dominant
vectors calculation that was explained in detail in the previous paragraphs (procedures 1-3).

AST1(1) AST2(1) AST3(1)

AST1(k) AST2(k) AST3(k)

AST1(m1) AST2(m2) AST3(m3)

Modulul 1
 (AST1)

.

.
.
.

.

.

Modulul 2
 (AST2)

Modulul 3
 (AST3)

Figure 4. Specific set of software applications (AST) with

redundancies at the software modules level
In order to set the basis of this calculus, here are the initial data of the problem. We

analyze an IT system, in which a command and control activity is supported through a
specific set of software applications (AST) consisting of three software modules (figure 4).

Table 3 depicts the failure intensities and their specific costs.
Table 3. Specific set of software applications - initial data

I
ASTiλ (hour-1) ASTic (u.c.)

1 0,0008 200
2 0,0005 300
3 0,0003 250

Reliability and Quality Control – Practice and Experience

13

For maximum generality we preferred expressing the ASTc values in unit costs

(u.c.). For an effective analysis of this case study and in order to obtain relevant results we
analyzed the functioning of the three ASTs for the time length of t=3000 hours.

The reliability of the software applications set is increased by introducing a
redundancy within its modules. The type of redundancy chosen is the one based on
introducing some spare software modules.

The reliability requirement is 0,95* =ASTP .

Problem: The optimal design of the AST by choosing the redundancy alternative
that meets the reliability requirement and that involves the lowest cost for the redundant
modules.

The solution to this problem is given by procedure 3, for 0,95* =ASTP .

In order to establish an orientative value for the constant ()*Pδ we take

75,0
^

=P < 0,95* =ASTP as a probability and assume that all its components

3

^

2

^

1

^
,, ASTASTAST PPP are equal. Consequently, 91,075,033 ^

1
^

=== PP AST .

The intermediary results are provided in table 4.

As we notice from the table, () 8867,071 =ASTP is the closest in value to

91,01

^
=ASTP and consequently/ it results that,

() 7:max 1

^

11

^
=

⎭
⎬
⎫

⎩
⎨
⎧ <= ASTASTAST PkPkn .

Table 4. Establishing the orientative value of the constant ()*
1ASTPδ - intermediary results

k PAST1(k) RAST1(k)

0 0,0082 0,0082
1 0,0395 0,0477
2 0,0948 0,1425
3 0,1517 0,2942
4 0,1820 0,4763
5 0,1747 0,6510
6 0,1398 0,7908
7 0,0959 0,8867
8 0,0575 0,9442

If () (){ }** :min Pkkn ii δϕ <= , the orientative value is:

() ()
() 00314,0
7
8ln17

1

1

1
11

^

1

^
===⎟

⎠
⎞

⎜
⎝
⎛=

AST

AST
ASTASTAST P

P
c

n ϕϕδ

By using procedure 2 we obtain the components of the dominant vector *n that

have to meet the condition:

() (){ }** :min Pkkn ASTiASTi δϕ <= ,

Reliability and Quality Control – Practice and Experience

14

As a result, the first 2ASTϕ that meets the previous condition is () 000260,082 =ASTϕ ,

namely the first 3ASTϕ that meets the previous condition is () 000179,063 =ASTϕ . It results the

dominant vector ()6,8,7
^

=n with its corresponding probability 95,063,0
^

<=P .

Moreover, by employing the rule of increase from procedure 1 the result is the

chain of dominant vectors presented in table 5 and their corresponding values ()nP and

()nC .

Table 5. Chain of dominant vectors

ASTn

1ASTn 2ASTn 3ASTn
()nP ()nC

7 8 6 0,639351 5300
7 9 6 0,790611 5600
7 10 6 0,889451 5900
7 11 6 0,946202 6200
8 11 6 0,975635 6400

We notice that the first dominant vector that meets the condition () 95,0* ≥nP at

the lowest cost is ()6,11,8=ASTn , whereas its corresponding probability is () 975,0=nP at

the cost of () 6400=nC u.c.

We also observe that by using procedure 3 we needed 5 steps to obtain the result,
whereas for the procedure 1 we would have needed 21 extra steps.

In order to implement formulas and do the calculations we used Microsoft Excel
due to the possibility it offers to introduce initial data in a rapid manner, and also because of
the elegant and explicit layout for the results provided by its spreadsheets.

Excel spreadsheet cells explanation:
• D4:D6 - intensity of failures in the modules that were given the notations AST1, AST2

and AST3;
• E4:E6 - modules specific cost;
• H3 - mission duration in hours;
• B9:B21 - number of redundant modules introduced;
• D9:D21 (H9:H21, L9:L21) - values of modules reliability; for example, cell D10

contains the formula
 =D9+POWER(F4*D4*H3;B10)/FACT(B10)*EXP(-(F4*D4*H3));

• E9:E21 (I9:I21, M9:M21) - values of the reliability increase for modules per unit cost;
for example, cell E10 contains the formula =(1/E4)*LN((D11/D10));

• C25:E25 (C29:E29) - chains of dominant vectors; for example, cell C26 contains the
formula =IF(MAX(E17;I17;M17)=E17;C25+1;C25);

• F25:F29 - values of overall AST reliability; for example, cell F25 contains the formula
=D16*H16*L16;
G25:G29 - values of overall AST costs; for example, cell G25 contains the formula

=C25*E4+D25*E5+E25*E6.

Reliability and Quality Control – Practice and Experience

15

Figure 6. Optimal allocation of the AST reliability by using the

method of calculating the dominant vectors- results

Reliability and Quality Control – Practice and Experience

16

In conclusion, in order to meet the imposed reliability requirement a specific set of

software applications tools is needed. The latter includes: eight modules type one, eleven
modules type two and six modules type three. The cost of the AST is 6400 unit cost.
References

1. BARLOW, R., PROSCHAN, F. Mathematical Theory of Reliability, John Wiley, New York, 1998
2. GHITA, A., IONESCU, V. Metode de calcul în fiabilitate, Editura Academiei Tehnice Militare,

Bucharest, 1996
3. GHITA, A., IONESCU, V., BICA, M. Metode de calcul în mentenabilitate, Editura Academiei

Tehnice Militare, Bucharest, 2000
4. SERB, A. Sisteme de calcul tolerante la defectari Editura Academiei Tehnice Militare,

Bucharest, 1996
5. VASILESCU, C. Alocarea optima a fiabilitatii seturilor specifice de aplicatii software din

sistemele C4ISR, The 10th International Scientific Conference, Academia Fortelor
Terestre, Sibiu, November 24-26, 2005

6. *** System and Software Reliability Assurance Notebook, produced for Rome Laboratory,
New York, 1997

7. *** TR-92-52 - Software Reliability Measurement and Test Integration Techniques,
produced for Rome Laboratory, New York, 1992

1 Cezar Vasilescu has graduated the Faculty of Electronics and Information Science within the Military Technical
Academy - Bucharest in 1997. He holds a PhD diploma in Computer Science from 2006.
He has graduated in 2003 the Advanced Management Program organized by National Defense University of
Washington D.C., USA. Also, he has received the US Department of Defense Chief Information Officer (CIO)
certification from the Information Resources Management College of Washington D.C.
Currently he is the head of the IT&C Office within the Regional Department of Defense Resources Management
Studies - Brasov and associate professor at the National Defense University - Bucharest. He is the author of more
than 30 journal articles and scientific presentations at conferences in the fields of hardware/software reliability,
command and control systems and information resources management.
He has coordinated as program manager the activity of establishing in Romania of an international educational
program in the field of information resources management, in collaboration with universities from USA. Beside his
research activity, he has coordinated “Train the Trainers” and “Educate the Educators” activities with international
participation.
Main published books:
- Information Management, Military Technical Academy Publishing House, Bucharest, 2006.
- Information Technology for Management, Regional Center of Defense Resources Management Publishing House,
Brasov, 2001.

2 Codifications of references:
[BARLOW 98] BARLOW, R., PROSCHAN, F. Mathematical Theory of Reliability, John Wiley, New York,

1998
[GHITA 96] GHITA, A., IONESCU, V. Metode de calcul în fiabilitate, Editura Academiei Tehnice Militare,

Bucharest, 1996
[GHITA 00] GHITA, A., IONESCU, V., BICA, M. Metode de calcul în mentenabilitate, Editura Academiei

Tehnice Militare, Bucharest, 2000
[ROME 92] *** TR-92-52 - Software Reliability Measurement and Test Integration Techniques,

produced for Rome Laboratory, New York, 1992
[ROME 97] *** System and Software Reliability Assurance Notebook, produced for Rome Laboratory,

New York, 1997
[SERB 96] SERB, A. Sisteme de calcul tolerante la defectari Editura Academiei Tehnice Militare,

Bucharest, 1996
[VASILESCU 05] VASILESCU, C. Alocarea optima a fiabilitatii seturilor specifice de aplicatii software din

sistemele C4ISR, The 10th International Scientific Conference, Academia Fortelor Terestre,
Sibiu, November 24-26, 2005

