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Abstract: In this article, the refinement process is presented with respect to model list building 
using model generators. Performance criteria for built models are used to order the model lists 
according to the needs of modelling. Models are classified by means of performance and 
complexity. An aggregated indicator based on the two factors is proposed and analysed in 
model list ordering. A software structure for model refinement is presented. A case study shows 
practical aspects of using the aggregated indicator in model refinement. 
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1. Model design concepts 
 

The software metrics refinement is the process of building models for software 
metrics estimation and choosing among them those who explain the studied phenomenon. 
Choosing a certain model has to underlie on objective criteria such as statistical performance 
and expression complexity. 

A set P containing the programs P1, P2 ,..., Pn is considered. A software quality 
system has the characteristics C1, C2 ..., Cm. For a certain characteristic Cj, several models, 
denoted by Mj1, Mj2 ..., Mjk, are built in order to estimate its level. 

These models have the following form: 
Mjh: yj=fjh(X1, X2, ..., Xr).  

When building the analytical form of fjh(), variables, coefficients and operators are 
taken into account. 

A large series of analytical expressions associated to software quality characteristics 
assessing processes are built. The model for estimating software developing effort E in man 
hours, for implementing a software product with KLOC thousands of source lines, has the 
expression: 
E(KLOC)=a+b KLOCc. 

As the feasibility of automated recording of influence factors levels for a certain 
characteristic Cj increases, premises arise for building more complex analytical expressions 
containing large number of variables and a large number of operators. That is why the 
differences between models should be studied and quantified. 
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The objective of software metrics estimation is prognosis for the values of the 
studied variables and using that information as underlying for management decisions at 
software project management level. 
 

2. Model refinement process 
 

In the context of model generation, the refinement process is described as follows. 
Consider the dataset S and a model generator G. The set of models generated by G to fit the 
dataset S is LM. The model set LM is characterized by the following: 

• the number of models is large 
• models have a variety of values for the performance criterion ranging from the worst 

fitting model to the best fitting model 
• models have a variety of values for the complexity, ranging from the most simple 

expressions to very complex ones 
• the best fitting models are not compulsory the most complex ones, and also, the 

simplest models are not the worst in explaining the studied phenomenon. 
The refinement process takes the set LM of generated models and produces a new 

model set LM' containing less models from the initial set. The models are chosen to meet 
certain criteria. The main criterion a model must meet is its capacity to explain the studied 
phenomenon. This is achieved using statistical performance indicators such as the sum of 
squared differences or R2. Model complexity is also taken into account as the expressions 
used in practice need to be simple and easy to explain and interpret.  

The sum of squared differences is an absolute measure of the quality of a model. 
Consider that the studied variable, Y, has n entries in the dataset, denoted by yi. The 
estimated values using a model are denoted by ŷi. The sum of squared differences is 
obtained by: 

SS = ∑
=

n

i 1
(yi-ŷi)2 

This statistical performance indicator shows the unexplained variance. Its value is 
always positive and grows with the size of the data series. In the context of model generation 
it can be used for model comparison as long as the length of the data series is the same for 
all models. To remove this deficiency the standard error of differences SE is computed as 
 

SE = 
2−n

SS
 

In the following sections, the sum of squared differences SS is used as the dataset 
used in estimation is the same for all models and comparison can be done using this 
indicator. For the same dataset, if a model M1 has a lower SS value than another model M2, 
the M1 model explains better the studied phenomenon. 

An analytical expression for a model M contains different elements whose number 
of apparitions are used in measuring its complexity using a Halstead software metric:  
C(M)=n1 log n1+n2 log n2 , where 
 n1 - number of operands, variables and coefficients; 
 n2- number of operators. 
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For the model: 
y = a x + b x3 + c u3 + d 
the table 1 is built. 
 
Table 1. Number of apparitions for operands and operators 
Operands Frequency 
x 2 
u 1 
a 1 
b 1 
c 1 
d 1 
y 1 
3 2 
n1 10 
Operators  
* 3 
+ 3 
()α 2 
n2 8 
  

The complexity C is given by the relation: 
C = n1 log2 n1 + n2 log2 n2 = 10 log2 10 + 8 log2 8=57.21928095 

It is desired, that models used in practice to be simple and easy to interpret, 
leading to low complexity expressions.  

The refinement process using model generators is described by the following 
diagram shown in figure 1. 

  
Figure 1. The model refinement process  
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- using variable names found in the dataset, model structures are generated; the list of 
generated model structures is denoted by LG and contains a large number of models, also 
depending on the constrains or type of the generation algorithm 
- for each model structure in LG, coefficients are estimated, along with statistical performance 
indicators, obtaining the list of estimated models, LE 
- for each model found in LE, an aggregated performance indicator is computed; the LE list is 
ordered by this performance indicator and an arbitrary number of models is chosen, forming 
LR list, the refined list of models; 
- the refined list of models is saved into a modelbase and then used by the human analyst to 
choose one or more models to be used in estimating the studied phenomenon. 
 

3. Performance criteria 
 

When using model generators, a large number of models is produced. From 
statistical point of view ordering the generated list of models by the performance indicator 
chooses the models that best represent the studied phenomenon. Ordering the list by the 
complexity of the model pays attention to simple models, but with significant loss of 
information. 

Let SS denote the sum of squared differences as performance indicator for statistical 
performance, and C denote the complexity. 

To classify generated models in two categories by means of complexity, an arbitrary 
value CC is chosen. Models with complexity less than CC are considered simple. Models with 
greater complexity than CC are considered complex. To classify generated models in two 
categories by means of performance, an arbitrary value SSC is considered. It is considered 
that models with performance indicator less that SSC show little error in explaining the 
phenomenon, as models with greater performance indicators than SSC do not represent 
correctly the phenomenon. 

Using the above partitioning, the generated models can be classified into 4 
categories as shown in figure 2. 
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Figure 2. Model classification by performance and complexity 
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The models shown in figure 1 have certain characteristics: 
A - complex models that explain the phenomenon; they are usually models with 
very good statistical performance 
B - complex models but weak in explaining the phenomenon; they usually include 
many factors that do not have influence, and analytical expression include many 
operands and functions that do not express correctly the connection between 
factors 
C - simple models but weak in explaining the phenomenon; usually, they do not 
include enough factors, and use simple operands and functions 
D - simple models that explain the phenomenon; it is desired that the models used 
to be from this category.   
It is obvious that an aggregated indicator is required to take into account both 

considered aspects of a model, the statistical performance and expression complexity. This is 
achieved by using an utility function associated to the model f(c,s), a two variable function, 
where c denotes the complexity of the model's analytical expression and s denotes the 
statistical performance indicator. 

Consider that the value of the aggregated performance indicator must be 
minimized, e.g. the sum of squared differences.  This leads to ascending ordered model lists 
by this indicator. The main properties of the function are: 

- the function increases with the growth of complexity; the more operands and 
operators an expression has, its complexity grows; model generators that use only 
statistical performance to order the generated model lists, usually create long 
analytical expressions; the complexity is a criterion that has to be minimized; 
- if the statistical performance indicator is to be minimized (e.g. the sum of squared 
differences), the function that computes the aggregated indicator value must 
increase while the factor raises. 
The aggregated performance indicator is used only in the refinement of models. It 

is not intended to replace the statistical performance indicators. Its purpose is to help the 
analyst to order model lists accordingly to his needs. 

Such an indicator is the weighted performance indicator PM given by: 
PM = SSM

p . CM
q 

where 
SSM – SS indicator for model M; 
CM – complexity of M. 
 p – coefficient of importance for statistical indicator 
 q - coefficients of importance for expression complexity 
This indicator has the properties exposed above. For example, for p=1 and q=0, 

the indicator becomes the same with SS. Setting different values for p and q, the importance 
of the two factors is modified.  
 

4. Software for model refinement 
 

Model refinement is achieved using dedicated software. Modelbases create the 
context for model refinement offering specific instruments for modeling and integrating 
aspects of modeling activity. 

Modelbases are complex software constructions offering functions for: 
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• defining, retrieving and updating models 
• modeling applications  management 
• estimation and validation of coefficients 
• automated model generation from existing datasets 
• dataset management 

A representation of the modelbase structure detailing the model generator branch 
is presented in figure 3. 
 

 
Figure 3. Modelbase structure with emphasis on model generators 

 
Model generators are modelbase instruments that build model structures from a 

given class using variables found in the dataset given as input. Model classes group models 
with the same structure, e.g. linear models, linear models with lagged variables, nonlinear 
models. For each class a model generator is developed. Each dataset contains data series for 
the recorded variables. The endogenous variable is specified and the generator builds 
analytical expressions using influence factors. For each model structure, coefficients are 
estimated and a performance indicator is computed. The resulting model list is ordered by 
the performance indicator. The analyst chooses between the best models an appropriate 
form that later will be used in estimating the studied characteristic.  
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multiply(a ,b) = a*b,  where a ,b are real numbers 
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log(a ,b) = log a b 
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This representations permits rephrasing of expressions, for example, given the 
expression: 
a + b * c + d e, it is equivalent with 
plus ( plus ( a , multiply (b , c) ) , power ( d , e ) ).  

Simplifying, it can be written as: 
+ + a * b c ^ d e, where ^ denotes rising to power operation. 

It is observed that this form corresponds to the polish notation, and has several 
advantages: 

• it is easy to evaluate such an expression using a stack and pushing element by 
element in reverse order as long as that element is an operand or popping and 
operating a number of operands when the element is an operator and then pushing 
the result back on the stack; the value that remains on the stack is the value of the 
expression 

• it is easy to build an expression directly in polish notation and when needed to be 
reconstructed an ordinary form. 
In order to build an expression directly in polish notation, expression elements are 

separated into sets. 
Let the set containing the influence factors symbolic names be denoted by V. Let the 

set containing the operators be denoted by O. Let CO denotes the set {q} where q marks the 
apparition of a coefficient in the expression. The set of expression elements is the reunion 
E=V U CO U O. Consider the model: 
TIME_DEV = a * CC b * PR c + d 
where 

• studied variable: TIME_DEV, the time needed to develop a software module 
• influence factors: CC – the cyclomatic complexity of module assessed at design time, 

PR – the rating of the programmer assigned to this activity; V={CC , PR} 
• operators: O = {+, *, ^} 
• coefficients : {a, b, c, d}  
 The equivalent polish notation is: 
+ * a * ^ CC b ^ PR c d. 

The nonlinear model generator uses internally the above representation of models. 
Using a combinatorial algorithm expressions are built directly in polish form. The parameters 
for this process are:  

• the operand set, V 
• the coefficient set, CO 
• the operator set, O 
• the maximum length of the stack 
• the maximum complexity of the generated expression 

The model generation is an important step in the refinement process. The nonlinear 
model generator is suitable for modeling as the phenomena do not always follow linear 
laws. 
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5. Experimental results 
 

Consider the model that estimates the time required for fixing a defect from a 
program module taking into account its severity and the number of code lines estimated to 
be modified or added: 

FIX_HOURS = f(LOC_COUNT, SEVERITY) 
where 

FIX_HOURS – the endogenous variable to be estimated, measured by man hours 
LOC_COUNT – estimated number of lines of code involved in the fix 
SEVERITY – the severity of the defect, between 1 and 5 

The sets taken into account are: 
• S = {plus, multiply, power} 
• V = { LOC_COUNT, SEVERITY } 

It observed that only addition, multiplication and raising to power operations are 
permitted. 

Using a nonlinear model generator with specific constraints the list of generated 
models is filtered and reduced in size. Constraints limit consecutive raising to power 
operations, consecutive operations on coefficients and a maximum stack dimension of 13. 
Consider the dataset D described in table 2. 
 
Table 2. Dataset used for model generation 
No. FIX_HOURS SEVERITY SLOC_COUNT 

1 1 2 4 
2 1 2 10 
3 1 3 1 
4 1 3 2 
5 2 2 15 
6 3 3 15 
7 40 5 200 

.... 

102 8 3 2 
103 20 2 265 
104 30 5 20 

 
The list of generated models is presented in table 3. 

 
Table 3. List of generated models for the selected dataset 
ID Expression 

M1 2.86*SEVERITY+0.284*LOC_COUNT-3.394 
M2 1.115*10-4*SEVERITY7.781 
M3 1.196*LOC_COUNT0.753-0.134 
M4 1.125*(SEVERITY*LOC_COUNT)0.601-0.898 
M5 1.081*SEVERITY0.036*LOC_COUNT0.763+0.082 
M6 0.321*SEVERITY2.204+0.501*LOC_COUNT0.891+0.253 
M7 (2.877*SEVERITY+0.833*LOC_COUNT)0.814-2.827 
 

For CC = 23 and SSC = 2.00 the generated models classify as presented in figure 4. 
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Model classification
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Figure 4. Generated models classification 
 

Ordering model lists by statistical performance indicator is done when model 
performance is the main objective of the analysis. The list of models, ordered by statistical 
performance indicator SS, given as output is shown in table 4. 
 
Table 4. Models ordered by statistical performance indicator SS 

ID Expression 
SS 

(104 
units) 

C 

M6 0.321*SEVERITY2.204+0.501*LOC_COUNT0.891+0.253 1.921 35.16 
M7 (2.877*SEVERITY+0.833*LOC_COUNT)0.814-2.827 1.939 27.11 
M1 2.86*SEVERITY+0.284*LOC_COUNT-3.394 1.964 19.60 
M3 1.196*LOC_COUNT0.753-0.134 1.978 12.75 
M5 1.081*SEVERITY0.036*LOC_COUNT0.763+0.082 1.978 27.11 
M4 1.125*(SEVERITY*LOC_COUNT)0.601-0.898 2.194 19.60 
M2 1.115*10-4*SEVERITY7.781 3.503 6.75 

As seen in table 4 the best model that estimates FIX_HOURS is M6, taking into 
account only the quality of estimation. However, it has the greatest complexity among all the 
rest, and uses five coefficients and two variables. Other models with resembling 
performance are M7, M1, M3, M5. 

Ordering the list by the weighted indicator PM with parameters p=3 and q=1, M3 
becomes eligible. It has few parameters and a single variable that is easy to obtain data for. 
It uses only a variable to asses the phenomenon. The results are shown in table 5. 
 
Table 5. Models ordered by aggregated indicator with p=3 and q=1 

ID Expression SS (104 
units) C 

PM 
p=3 
q=1 

M3 1.196*LOC_COUNT0.753-0.134 1.978 12.75 98.67089 
M1 2.86*SEVERITY+0.284*LOC_COUNT-3.394 1.964 19.60 148.4843 
M7 (2.877*SEVERITY+0.833*LOC_COUNT)0.814-2.827 1.939 27.11 197.6346 
M4 1.125*(SEVERITY*LOC_COUNT)0.601-0.898 2.194 19.60 206.9979 
M5 1.081*SEVERITY0.036*LOC_COUNT0.763+0.082 1.978 27.11 209.8014 
M6 0.321*SEVERITY2.204+0.501*LOC_COUNT0.891+0.253 1.921 35.16 249.2476 
M2 1.115*10-4*SEVERITY7.781 3.503 6.75 290.1511 
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The parameter setting shown in table 5 pays more attention to model performance. 
It is recommended that analysts use such settings when the studied phenomenon do not 
offer clues for the form of the link between the variables. 

The p and q parameters are used to increase or decrease the importance of factors. 
Different values for p and q offer different list orderings according to analyst's interest. For 
example, the list ordering for p=1 and q=2 is shown in table 6. 
 
Table no.6 Models ordered by aggregated indicator with p=1 and q=2 

ID Expression 
SS 

(104 
units) 

C 
PM 
p=1 
q=2 

M2 1.115*10-4*SEVERITY7.781 3.503 6.75 159.6054 
M3 1.196*LOC_COUNT0.753-0.134 1.978 12.75 321.5486 
M1 2.86*SEVERITY+0.284*LOC_COUNT-3.394 1.964 19.60 754.4902 
M4 1.125*(SEVERITY*LOC_COUNT)0.601-0.898 2.194 19.60 842.8470 
M7 (2.877*SEVERITY+0.833*LOC_COUNT)0.814-2.827 1.939 27.11 1425.0721 
M5 1.081*SEVERITY0.036*LOC_COUNT0.763+0.082 1.978 27.11 1453.7353 
M6 0.321*SEVERITY2.204+0.501*LOC_COUNT0.891+0.253 1.921 35.16 2374.7894 
 

The parameter setting shown above pays attention to very simple models. In this 
case simplicity is more valuated than performance. This kind of setting is recommended only 
when there is a clue that the link between the studied variables follows a simple expression. 

Subsequent updates on the database require that periodical estimation of 
coefficients to track changes. 

The best models obtained are stored and operated on using the modelbase.  
 

5. Conclusions 
  

The refinement process is guided by the analyst according to his needs. This process 
is complex and operates on model sets. Model sets are built by model generators using the 
datasets that are to by analyzed. 

Performance criteria are needed to choose among the models. The analyst uses 
these criteria to order generated model lists. 

The most important criterion for list ordering is the statistical performance. The 
model is used to explain a phenomenon and predict evolution when giving certain inputs. 
Ordering the model lists by this criterion gives access to the best models and it is 
recommended to use it when precision is a critical aspect of the modeling activity. 

Model complexity is a criterion that orders the models according to their structure. It 
is incorrect to use the complexity alone when ordering model lists. 

The aggregated performance indicator is a solution to combine both studied 
aspects of a model. The analyst can set parameter settings that give separate importance to 
performance and complexity. The purpose of using the aggregated performance indicator is 
to obtain simple models but with minimum loss of information in explaining the studied 
phenomenon.  

On the other hand, the analyst is required to interpret results, to asses different 
variants. A group of models from the top of the ordered list are chosen and used. It is 
important to validate the models assessing their performance over time or using other 
datasets. 
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The aggregated performance indicator does not replace statistical performance 
indicators. It is intended to be used only in the context of model generation. 
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