

Software Analyses

118

PERFORMANCE CRITERIA FOR SOFTWARE
METRICS MODEL REFINEMENT

Adrian VISOIU1
PhD Candidate, Assistant Lecturer, Economic Informatics Department,
Academy of Economic Studies, Bucharest, Romania

E-mail: adrian.visoiu@csie.ase.ro

Abstract: In this article, the refinement process is presented with respect to model list building
using model generators. Performance criteria for built models are used to order the model lists
according to the needs of modelling. Models are classified by means of performance and
complexity. An aggregated indicator based on the two factors is proposed and analysed in
model list ordering. A software structure for model refinement is presented. A case study shows
practical aspects of using the aggregated indicator in model refinement.

Key words: software; metrics; modelling; performance criteria

1. Model design concepts

The software metrics refinement is the process of building models for software
metrics estimation and choosing among them those who explain the studied phenomenon.
Choosing a certain model has to underlie on objective criteria such as statistical performance
and expression complexity.

A set P containing the programs P1, P2 ,..., Pn is considered. A software quality
system has the characteristics C1, C2 ..., Cm. For a certain characteristic Cj, several models,
denoted by Mj1, Mj2 ..., Mjk, are built in order to estimate its level.

These models have the following form:
Mjh: yj=fjh(X1, X2, ..., Xr).

When building the analytical form of fjh(), variables, coefficients and operators are
taken into account.

A large series of analytical expressions associated to software quality characteristics
assessing processes are built. The model for estimating software developing effort E in man
hours, for implementing a software product with KLOC thousands of source lines, has the
expression:
E(KLOC)=a+b KLOCc.

As the feasibility of automated recording of influence factors levels for a certain
characteristic Cj increases, premises arise for building more complex analytical expressions
containing large number of variables and a large number of operators. That is why the
differences between models should be studied and quantified.

Software Analyses

119

The objective of software metrics estimation is prognosis for the values of the
studied variables and using that information as underlying for management decisions at
software project management level.

2. Model refinement process

In the context of model generation, the refinement process is described as follows.
Consider the dataset S and a model generator G. The set of models generated by G to fit the
dataset S is LM. The model set LM is characterized by the following:

• the number of models is large
• models have a variety of values for the performance criterion ranging from the worst

fitting model to the best fitting model
• models have a variety of values for the complexity, ranging from the most simple

expressions to very complex ones
• the best fitting models are not compulsory the most complex ones, and also, the

simplest models are not the worst in explaining the studied phenomenon.
The refinement process takes the set LM of generated models and produces a new

model set LM' containing less models from the initial set. The models are chosen to meet
certain criteria. The main criterion a model must meet is its capacity to explain the studied
phenomenon. This is achieved using statistical performance indicators such as the sum of
squared differences or R2. Model complexity is also taken into account as the expressions
used in practice need to be simple and easy to explain and interpret.

The sum of squared differences is an absolute measure of the quality of a model.
Consider that the studied variable, Y, has n entries in the dataset, denoted by yi. The
estimated values using a model are denoted by ŷi. The sum of squared differences is
obtained by:

SS = ∑
=

n

i 1
(yi-ŷi)2

This statistical performance indicator shows the unexplained variance. Its value is
always positive and grows with the size of the data series. In the context of model generation
it can be used for model comparison as long as the length of the data series is the same for
all models. To remove this deficiency the standard error of differences SE is computed as

SE =
2−n

SS

In the following sections, the sum of squared differences SS is used as the dataset
used in estimation is the same for all models and comparison can be done using this
indicator. For the same dataset, if a model M1 has a lower SS value than another model M2,
the M1 model explains better the studied phenomenon.

An analytical expression for a model M contains different elements whose number
of apparitions are used in measuring its complexity using a Halstead software metric:
C(M)=n1 log n1+n2 log n2 , where
 n1 - number of operands, variables and coefficients;
 n2- number of operators.

Software Analyses

120

For the model:
y = a x + b x3 + c u3 + d
the table 1 is built.

Table 1. Number of apparitions for operands and operators
Operands Frequency
x 2
u 1
a 1
b 1
c 1
d 1
y 1
3 2
n1 10
Operators
* 3
+ 3
()α 2
n2 8

The complexity C is given by the relation:
C = n1 log2 n1 + n2 log2 n2 = 10 log2 10 + 8 log2 8=57.21928095

It is desired, that models used in practice to be simple and easy to interpret,
leading to low complexity expressions.

The refinement process using model generators is described by the following
diagram shown in figure 1.

Figure 1. The model refinement process

The refinement process takes the following steps:
- the dataset is built; it contains data series for the dependent variable and independent
variables

Dataset
D1,D2,...

Analytical
expression
generation Parameter

estimation

Model
list
ordering

model
variables list of

model
structures

Modelbase
M1,M2,...

list of
models

list of
refined
models

Software Analyses

121

- using variable names found in the dataset, model structures are generated; the list of
generated model structures is denoted by LG and contains a large number of models, also
depending on the constrains or type of the generation algorithm
- for each model structure in LG, coefficients are estimated, along with statistical performance
indicators, obtaining the list of estimated models, LE
- for each model found in LE, an aggregated performance indicator is computed; the LE list is
ordered by this performance indicator and an arbitrary number of models is chosen, forming
LR list, the refined list of models;
- the refined list of models is saved into a modelbase and then used by the human analyst to
choose one or more models to be used in estimating the studied phenomenon.

3. Performance criteria

When using model generators, a large number of models is produced. From
statistical point of view ordering the generated list of models by the performance indicator
chooses the models that best represent the studied phenomenon. Ordering the list by the
complexity of the model pays attention to simple models, but with significant loss of
information.

Let SS denote the sum of squared differences as performance indicator for statistical
performance, and C denote the complexity.

To classify generated models in two categories by means of complexity, an arbitrary
value CC is chosen. Models with complexity less than CC are considered simple. Models with
greater complexity than CC are considered complex. To classify generated models in two
categories by means of performance, an arbitrary value SSC is considered. It is considered
that models with performance indicator less that SSC show little error in explaining the
phenomenon, as models with greater performance indicators than SSC do not represent
correctly the phenomenon.

Using the above partitioning, the generated models can be classified into 4
categories as shown in figure 2.

Generated model classes

0

20

40

60

80

100

120

0 1000 2000 3000 4000 5000 6000

SS

C

A B

CD

Figure 2. Model classification by performance and complexity

Software Analyses

122

The models shown in figure 1 have certain characteristics:
A - complex models that explain the phenomenon; they are usually models with
very good statistical performance
B - complex models but weak in explaining the phenomenon; they usually include
many factors that do not have influence, and analytical expression include many
operands and functions that do not express correctly the connection between
factors
C - simple models but weak in explaining the phenomenon; usually, they do not
include enough factors, and use simple operands and functions
D - simple models that explain the phenomenon; it is desired that the models used
to be from this category.
It is obvious that an aggregated indicator is required to take into account both

considered aspects of a model, the statistical performance and expression complexity. This is
achieved by using an utility function associated to the model f(c,s), a two variable function,
where c denotes the complexity of the model's analytical expression and s denotes the
statistical performance indicator.

Consider that the value of the aggregated performance indicator must be
minimized, e.g. the sum of squared differences. This leads to ascending ordered model lists
by this indicator. The main properties of the function are:

- the function increases with the growth of complexity; the more operands and
operators an expression has, its complexity grows; model generators that use only
statistical performance to order the generated model lists, usually create long
analytical expressions; the complexity is a criterion that has to be minimized;
- if the statistical performance indicator is to be minimized (e.g. the sum of squared
differences), the function that computes the aggregated indicator value must
increase while the factor raises.
The aggregated performance indicator is used only in the refinement of models. It

is not intended to replace the statistical performance indicators. Its purpose is to help the
analyst to order model lists accordingly to his needs.

Such an indicator is the weighted performance indicator PM given by:
PM = SSM

p . CM
q

where
SSM – SS indicator for model M;
CM – complexity of M.
 p – coefficient of importance for statistical indicator
 q - coefficients of importance for expression complexity
This indicator has the properties exposed above. For example, for p=1 and q=0,

the indicator becomes the same with SS. Setting different values for p and q, the importance
of the two factors is modified.

4. Software for model refinement

Model refinement is achieved using dedicated software. Modelbases create the
context for model refinement offering specific instruments for modeling and integrating
aspects of modeling activity.

Modelbases are complex software constructions offering functions for:

Software Analyses

123

• defining, retrieving and updating models
• modeling applications management
• estimation and validation of coefficients
• automated model generation from existing datasets
• dataset management

A representation of the modelbase structure detailing the model generator branch
is presented in figure 3.

Figure 3. Modelbase structure with emphasis on model generators

Model generators are modelbase instruments that build model structures from a

given class using variables found in the dataset given as input. Model classes group models
with the same structure, e.g. linear models, linear models with lagged variables, nonlinear
models. For each class a model generator is developed. Each dataset contains data series for
the recorded variables. The endogenous variable is specified and the generator builds
analytical expressions using influence factors. For each model structure, coefficients are
estimated and a performance indicator is computed. The resulting model list is ordered by
the performance indicator. The analyst chooses between the best models an appropriate
form that later will be used in estimating the studied characteristic.

The nonlinear model generator is intended for building nonlinear models for
software metrics estimation. The algorithm is based on generating expressions in polish form
using a combinatorial method.

An expression is built up of operands and operators. In this case, operands are
represented by independent variables and coefficients. Operators consist of elementary
operations and other functions.

Consider the multiplication operator, *, and two operands. a and b. The operation
a*b can be viewed as the result of a function, multiply, that has the form:
multiply(a ,b) = a*b, where a ,b are real numbers

In the same manner other operations are treated, building
plus(a, b) = a +b
power(a, b) = a b
log(a ,b) = log a b

Modelbase

Model
management

Model
generators

Dataset
management

Linear model
generator

Lagged
variables model

generator

Nonlinear
model

generator

Software Analyses

124

This representations permits rephrasing of expressions, for example, given the
expression:
a + b * c + d e, it is equivalent with
plus (plus (a , multiply (b , c)) , power (d , e)).

Simplifying, it can be written as:
+ + a * b c ^ d e, where ^ denotes rising to power operation.

It is observed that this form corresponds to the polish notation, and has several
advantages:

• it is easy to evaluate such an expression using a stack and pushing element by
element in reverse order as long as that element is an operand or popping and
operating a number of operands when the element is an operator and then pushing
the result back on the stack; the value that remains on the stack is the value of the
expression

• it is easy to build an expression directly in polish notation and when needed to be
reconstructed an ordinary form.
In order to build an expression directly in polish notation, expression elements are

separated into sets.
Let the set containing the influence factors symbolic names be denoted by V. Let the

set containing the operators be denoted by O. Let CO denotes the set {q} where q marks the
apparition of a coefficient in the expression. The set of expression elements is the reunion
E=V U CO U O. Consider the model:
TIME_DEV = a * CC b * PR c + d
where

• studied variable: TIME_DEV, the time needed to develop a software module
• influence factors: CC – the cyclomatic complexity of module assessed at design time,

PR – the rating of the programmer assigned to this activity; V={CC , PR}
• operators: O = {+, *, ^}
• coefficients : {a, b, c, d}
 The equivalent polish notation is:
+ * a * ^ CC b ^ PR c d.

The nonlinear model generator uses internally the above representation of models.
Using a combinatorial algorithm expressions are built directly in polish form. The parameters
for this process are:

• the operand set, V
• the coefficient set, CO
• the operator set, O
• the maximum length of the stack
• the maximum complexity of the generated expression

The model generation is an important step in the refinement process. The nonlinear
model generator is suitable for modeling as the phenomena do not always follow linear
laws.

Software Analyses

125

5. Experimental results

Consider the model that estimates the time required for fixing a defect from a
program module taking into account its severity and the number of code lines estimated to
be modified or added:

FIX_HOURS = f(LOC_COUNT, SEVERITY)
where

FIX_HOURS – the endogenous variable to be estimated, measured by man hours
LOC_COUNT – estimated number of lines of code involved in the fix
SEVERITY – the severity of the defect, between 1 and 5

The sets taken into account are:
• S = {plus, multiply, power}
• V = { LOC_COUNT, SEVERITY }

It observed that only addition, multiplication and raising to power operations are
permitted.

Using a nonlinear model generator with specific constraints the list of generated
models is filtered and reduced in size. Constraints limit consecutive raising to power
operations, consecutive operations on coefficients and a maximum stack dimension of 13.
Consider the dataset D described in table 2.

Table 2. Dataset used for model generation
No. FIX_HOURS SEVERITY SLOC_COUNT

1 1 2 4
2 1 2 10
3 1 3 1
4 1 3 2
5 2 2 15
6 3 3 15
7 40 5 200

....

102 8 3 2
103 20 2 265
104 30 5 20

The list of generated models is presented in table 3.

Table 3. List of generated models for the selected dataset
ID Expression

M1 2.86*SEVERITY+0.284*LOC_COUNT-3.394
M2 1.115*10-4*SEVERITY7.781
M3 1.196*LOC_COUNT0.753-0.134
M4 1.125*(SEVERITY*LOC_COUNT)0.601-0.898
M5 1.081*SEVERITY0.036*LOC_COUNT0.763+0.082
M6 0.321*SEVERITY2.204+0.501*LOC_COUNT0.891+0.253
M7 (2.877*SEVERITY+0.833*LOC_COUNT)0.814-2.827

For CC = 23 and SSC = 2.00 the generated models classify as presented in figure 4.

Software Analyses

126

Model classification

1.921;
35.16
1.939;
27.11

1.978;
12.75

3.503; 6.75

1.978;
27.11

1.964; 19.6 2.194; 19.6

0
5

10
15
20
25
30
35
40

0 1 2 3 4

SS

C

SSc=2.000

Cc = 23

Figure 4. Generated models classification

Ordering model lists by statistical performance indicator is done when model
performance is the main objective of the analysis. The list of models, ordered by statistical
performance indicator SS, given as output is shown in table 4.

Table 4. Models ordered by statistical performance indicator SS

ID Expression
SS

(104
units)

C

M6 0.321*SEVERITY2.204+0.501*LOC_COUNT0.891+0.253 1.921 35.16
M7 (2.877*SEVERITY+0.833*LOC_COUNT)0.814-2.827 1.939 27.11
M1 2.86*SEVERITY+0.284*LOC_COUNT-3.394 1.964 19.60
M3 1.196*LOC_COUNT0.753-0.134 1.978 12.75
M5 1.081*SEVERITY0.036*LOC_COUNT0.763+0.082 1.978 27.11
M4 1.125*(SEVERITY*LOC_COUNT)0.601-0.898 2.194 19.60
M2 1.115*10-4*SEVERITY7.781 3.503 6.75

As seen in table 4 the best model that estimates FIX_HOURS is M6, taking into
account only the quality of estimation. However, it has the greatest complexity among all the
rest, and uses five coefficients and two variables. Other models with resembling
performance are M7, M1, M3, M5.

Ordering the list by the weighted indicator PM with parameters p=3 and q=1, M3
becomes eligible. It has few parameters and a single variable that is easy to obtain data for.
It uses only a variable to asses the phenomenon. The results are shown in table 5.

Table 5. Models ordered by aggregated indicator with p=3 and q=1

ID Expression SS (104
units) C

PM
p=3
q=1

M3 1.196*LOC_COUNT0.753-0.134 1.978 12.75 98.67089
M1 2.86*SEVERITY+0.284*LOC_COUNT-3.394 1.964 19.60 148.4843
M7 (2.877*SEVERITY+0.833*LOC_COUNT)0.814-2.827 1.939 27.11 197.6346
M4 1.125*(SEVERITY*LOC_COUNT)0.601-0.898 2.194 19.60 206.9979
M5 1.081*SEVERITY0.036*LOC_COUNT0.763+0.082 1.978 27.11 209.8014
M6 0.321*SEVERITY2.204+0.501*LOC_COUNT0.891+0.253 1.921 35.16 249.2476
M2 1.115*10-4*SEVERITY7.781 3.503 6.75 290.1511

Software Analyses

127

The parameter setting shown in table 5 pays more attention to model performance.
It is recommended that analysts use such settings when the studied phenomenon do not
offer clues for the form of the link between the variables.

The p and q parameters are used to increase or decrease the importance of factors.
Different values for p and q offer different list orderings according to analyst's interest. For
example, the list ordering for p=1 and q=2 is shown in table 6.

Table no.6 Models ordered by aggregated indicator with p=1 and q=2

ID Expression
SS

(104
units)

C
PM
p=1
q=2

M2 1.115*10-4*SEVERITY7.781 3.503 6.75 159.6054
M3 1.196*LOC_COUNT0.753-0.134 1.978 12.75 321.5486
M1 2.86*SEVERITY+0.284*LOC_COUNT-3.394 1.964 19.60 754.4902
M4 1.125*(SEVERITY*LOC_COUNT)0.601-0.898 2.194 19.60 842.8470
M7 (2.877*SEVERITY+0.833*LOC_COUNT)0.814-2.827 1.939 27.11 1425.0721
M5 1.081*SEVERITY0.036*LOC_COUNT0.763+0.082 1.978 27.11 1453.7353
M6 0.321*SEVERITY2.204+0.501*LOC_COUNT0.891+0.253 1.921 35.16 2374.7894

The parameter setting shown above pays attention to very simple models. In this
case simplicity is more valuated than performance. This kind of setting is recommended only
when there is a clue that the link between the studied variables follows a simple expression.

Subsequent updates on the database require that periodical estimation of
coefficients to track changes.

The best models obtained are stored and operated on using the modelbase.

5. Conclusions

The refinement process is guided by the analyst according to his needs. This process
is complex and operates on model sets. Model sets are built by model generators using the
datasets that are to by analyzed.

Performance criteria are needed to choose among the models. The analyst uses
these criteria to order generated model lists.

The most important criterion for list ordering is the statistical performance. The
model is used to explain a phenomenon and predict evolution when giving certain inputs.
Ordering the model lists by this criterion gives access to the best models and it is
recommended to use it when precision is a critical aspect of the modeling activity.

Model complexity is a criterion that orders the models according to their structure. It
is incorrect to use the complexity alone when ordering model lists.

The aggregated performance indicator is a solution to combine both studied
aspects of a model. The analyst can set parameter settings that give separate importance to
performance and complexity. The purpose of using the aggregated performance indicator is
to obtain simple models but with minimum loss of information in explaining the studied
phenomenon.

On the other hand, the analyst is required to interpret results, to asses different
variants. A group of models from the top of the ordered list are chosen and used. It is
important to validate the models assessing their performance over time or using other
datasets.

Software Analyses

128

The aggregated performance indicator does not replace statistical performance
indicators. It is intended to be used only in the context of model generation.

Bibliography

1. Boja, C., Ivan, I. Metode statistice în analiza software, Editura ASE, Bucharest, 2004
2. Ivan, I., Popescu, M. Metrici software, Editura Inforec, Bucharest, 1999
3. Ivan, I., Visoiu, A. Baza de modele economice, Editura ASE, Bucharest, 2005
4. Jalote, P. Software Project Management in Practice, Addison Wesley, 2002
5. Toma, C., Ivan, I., Popa, M., Boja, C. Data Metrics Properties, Proceedings of International

Symposium October 22-23, Iasi, 2004, p. 45-56
6. Visoiu, A., Garais, G. Nonlinear model structure generator for software metrics estimation,

The 37th International Scientific Symposium of METRA, Bucharest, May, 26th - 27th,
2006, Ministry of National Defence, published on CD

7. Visoiu, A., Ivan, I. Rafinarea metricilor software, Economistul, supliment Economie teoretica si
aplicativa, nr.1947 (2973), 29 august 2005

1 Adrian Visoiu graduated the Bucharest Academy of Economic Studies, the Faculty of Cybernetics, Statistics and
Economic Informatics. He has a master degree in Project Management. He is a PhD student at Doctoral School of
Bucharest Academy of Economic Studies in the field of Economic Informatics.
He is an assistant lecturer in the Economic Informatics Department of the Bucharest Academy of Economic Studies.
He published 7 articles and he is coauthor of “Baza de modele economice” book.

