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Abstract: This paper tackles the problem of maximum likelihood estimation [2] under various
types of constraints (equalities and inequalities restrictions) on parameters. The initial model,
which is in fact a maximization problem (here are a few methods available in literature for
estimating the parameters: ERM (expectation-restricted-maximization) algorithms, GP (gradient
projection) algorithms and so on) is change into a new problem, a minimization problem. This
second form is suited to a variant of Frank-Wolfe method for solving linearly restricted
nonlinear programming problems [5]. In this way, some difficulties from the previous
approaches are removed.
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Developments and algorithms'

There are many situations in statistical computation which implies maximum likelihood
estimation. The aim of this work is to generalize a model developed by Jamshidian [2] (by
intfroducing a supplementary inequality constraint at the left) and to solve them using a
regularization of FW-algorithm [5]. Thus, consider the optimization problem:

maxI(6)

al0=Diel,

b <a/0<b’iel,

(1)

subject to {
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where (-)=(91,...,9p)e RP.0>0, a, :(ail,...,aip)e RP, |1={il,...,im} and

I, ={i i, f,cardl, =m, cardl, =n.
From (1) we get:

max1(6)
aj0=Db,iel
subject to a0<b’iel, 2)

-a/0<-b iel,

Now we denote

ail = ui1 bil = Vil aim+1 = uim+1 i:1+1 = Vim+1
L s : : : (3)
aim = uim bim = Vim im+n = uim+n i-r'—n+n = Vim+n
and
—a Ty g = Vi
m+1 m+n+1 m+1 m+n+1
' : (4)
o im+n :uim+2n ir_n+n =vim+2n
Let Ly ={i. s nsenrimion -
The problem (2) is equivalent with:
maxl(0)
wo=v,cel,
st . (5)
u,0<v, iel,
or
maxl(0)
uiTkG:Vik,k=1,_m @
S luj0<v, k=m+1m+2n
Under the assumptions that 0, =p,..0, =1, and
f:RP R, f(n)= (|(0)+ O ppy +ot O-up+2n) where
+2
l'l € Rp " U= (91Mp+1""’l"l'p+2n): (611"'16p 1Mp+1""’l’l'p+2n):

= (ul,...,}«lp ,Hp+1’--'lup+2n)

we may formulate (6) as:




minf (u)
uiT9=vi K =1,_m

s.t T k k e
u0+p =V, k=m+lm+2n

In the matricial form we have:

minf (u)
u 0 . 0
00 .0
-irm+1 1 0 O
s.t. T
i 01 0
m+2
ll-r|1-1+2n—1 0 . 1 0
! 0 . 1
m+2n
or
minf (n)
U, 0
=V
UZ IZn u
where
u;i -irm+1
U, =| |, U,=|
u-irm ;rm+2n
If

U, 0
A=
UZ IZn

then (9) is equivalent with

minf (u)
s.t.

Wy

u p+2n

Im+2n
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(7)

(8)

(9)
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peR”" AeM

or

R),V c Rm+2n

m+2n,p+2n(

minf (u)
s.t. (11)

pe X
where
X :{xe R‘”z"/Ax:V,xZO}

Discussion and conclusion

The problem in the form (11) is suitable for applying a variant of Frank-Wolfe method (the
regularized algorithm-RFW) (see Migdalas [5]):

For uk € X, the objective function f is approximated by V f(pk)Tp and (11) becomes:

minVf (pk)Tu
s.t. (12)
pe X

The regularization of the problem means that an additional term appears in the objective
function such that the distance between the iteration point uk and the solution ﬁk is

restricted. It is proved [2] that the point uk is a solution for (11) if and only if it verifies the
regularized subproblem:

minvf (] g+t o, )
st (13)
pe X

Moreover, the regularized Frank-Wolfe algorithm, given below, is convergent [4,5].

-Step 1: consider uo e Xt,=t>0k=0.
-Step 2: consider p* the solution for (11) and let d“ =p* —p*. If d“ =0, stop.

-Step 3: for a* = max{oc [ p* +akd" }e X seek after
aX eargmin{f (1 + ofd" ) o [0,& ||, Let p*t=p*+afa¥ t,, =t k=k+1. Go to
step 2.
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