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Abstract: This paper tackles the problem of maximum likelihood estimation [2] under various 
types of constraints (equalities and inequalities restrictions) on parameters. The initial model, 
which is in fact a maximization problem (here are a few methods available in literature for 
estimating the parameters: ERM (expectation-restricted-maximization) algorithms, GP (gradient 
projection) algorithms and so on) is change into a new problem, a minimization problem. This 
second form is suited to a variant of Frank-Wolfe method for solving linearly restricted 
nonlinear programming problems [5]. In this way, some difficulties from the previous 
approaches are removed. 
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Developments and algorithms1 
 
There are many situations in statistical computation which implies maximum likelihood 
estimation. The aim of this work is to generalize a model developed by Jamshidian [2] (by 
introducing a supplementary inequality constraint at the left) and to solve them using a 
regularization of  FW-algorithm [5]. Thus, consider the optimization problem: 
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where ( ) 0θθ ≥∈θθ= ,R,..., p
p1 , ( ) p

ii Ra,...,a
pi
∈=

1
a , { }mi,...,iI 11 =  and 

{ }nmm i,...,iI ++= 12 , mI =1card , nI =2card . 

 
From (1) we get: 
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Now we denote 
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Let { }nmnmm i,...,i,...,iI 213 +++= . 

The problem (2) is equivalent with: 
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or 
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Under the assumptions that pp,..., μ=θμ=θ 11  and 
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we may formulate (6) as: 
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In the matricial form we have: 
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then (9) is equivalent with 
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Discussion and conclusion 
 
The problem in the form (11) is suitable for applying a variant of Frank-Wolfe method (the 
regularized algorithm-RFW) (see Migdalas [5]): 

For Xk ∈μ , the objective function f  is approximated by ( ) μμ Tf k∇  and (11) becomes: 
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The regularization of the problem means that an additional term appears in the objective 

function such that the distance between the iteration point kμ  and the solution k~μ  is 

restricted. It is proved [2] that the point kμ  is a solution for (11) if and only if it verifies the 
regularized subproblem:  
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Moreover, the regularized Frank-Wolfe algorithm, given below, is convergent [4,5]. 
 

-Step 1: consider 000
0 =>=∈ ,ktX,tμ . 

-Step 2: consider kμ  the solution for (11) and let kkk ~ μμd −= . If 0d =k , stop. 

-Step 3: for { } X/~ kkkk ∈α+α=α dμmax  seek after 
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step 2. 
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