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Abstract: In this paper, the hierarchical ways for building a regression model by using 
bootstrap and jackknife resampling methods were presented. Bootstrap approaches based on 
the observations and errors resampling, and jackknife approaches based on the delete-one 
and delete-d observations were considered.  And also we consider estimating bootstrap and 
jackknife bias, standard errors and confidence intervals of the regression coefficients, and 
comparing with the concerning estimates of ordinary least squares. Obtaining of the estimates 
was presented with an illustrative real numerical example.  The jackknife bias, the standard 
errors and confidence intervals of regression coefficients are substantially larger than the 
bootstrap and estimated asymptotic OLS standard errors. The jackknife percentile intervals also 
are larger than to the bootstrap percentile intervals of the regression coefficients. 
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Introduction 

Regression analysis is a statistical analysis technique that characterizes the 
relationship between two or more variables for prediction and estimation by a mathematical 

model called regression model. Finding estimates of bias and variance of the estimator β̂  in 

estimation β  and constructing confidence intervals for β  and prediction intervals for a 

future observation with explanatory variables xj are also interested in. Let the linear 

regression model be εβ += Xy with the variance 2)var( σ=y , where y=(y1,y2,...yn)` 

denotes the nx1 vector of the response, X=(x1,x2,...xn)` is matrix of regressors with nxp 
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dimension including intercept, p is the number of parameters, iε is an nx1 vector of 

uncorrelated error terms of zero mean and identical variance 2σ (Fox,1997; Sahinler and 

Bek, 2006). Then the least squares estimator YXXX /1/
^

)( −=β  has variance-covariance 

matrix 1/2
^

)()( −= XXVar σβ  and 100(1-α) % confidence intervals )(*
^

2
,

^

jepnj St ββ α−± . 

Traditional approaches, like ordinary least squares, rely on some major modelling 
assumptions strongly. Although they are provided, the conclusions are based on asymtotical 
or approximate properties frequently. The reliability ot the satatistical analysis depends 
therefore on the validity of these assumptions and on the sample size. There are several 
useful methods  for diagnosing and treating violations of the regression assumptions. Robust 
estimation strategies and residual diagnostics have improved the usefulness of these 
tecniques (Sahinler, 2000). However, they may not be provided these assumptions by using 
these methods.  

The observed data was considered as a representative picture of the entire 
population in resampling methods. Hence, the main idea to make statistical inference based 
on an artificial resample, which is drawn from the full sample (Friedl and Stampfer, 2002b).  
The ordinary sampling techniques use some assumptions related to the form of the estimator 
distribution, but resampling methods do not need these assumptions because the sample is 
thought as population. The bootstrap and jackknife are nonparametric and specific 
resampling techniques that purpose of deriving estimates of standard errors and confidence 
intervals of a population parameter like a mean, median, proportion, odds ratio, correlation 
coefficient or regression coefficient calculations without making distributional assumptions 
when those assumptions are in doubt, or where parametric inference is impossible or 
requires very complicated formulas for the calculation of standard errors (Efron, 1982).  

This study focuses on illustration and aplication of resampling techniques in 
regression analysis. Some hyerarchical algoritms of concerning techniques in regression 
analysis are demonstrated. The basics of the bootstrap and jackknife resampling techniques 
and their applications to the real numerical example that can be described by linear 
regression model were discussed and compared the results with ordinary least squares 
regression results.  
 

Materials and Methods 
 
Material. The aim of the following study is to illustrate the bootstrap and jackknife 

regression parameter estimation as the methodology in method. The real data produced in 
the fisheries study in Mustafa Kemal University (Turkey) was used as material. Amongst 
others, the Total Length of fish (TL) and Otolith Length (OL) were considered as independent 
variables in order to explain the variation in Fish Age (FA) of  n=100 fish related to a fish 
species (Can and Sahinler, 2005). The statistical packages S-PLUS FOR WINDOWS was used 
for the statistical analysis of these data. 

 
Method. To describe the resampling methods we start with an n sized sample 

)',( jiii XYw =  and assume that wis are drawn independently and identically from a 
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distribution of F, where )',...,,( 21 ni yyyY =  contains the responses, 

)'...,,,( 321 jnjjjji xxxxX =  is a matrix of dimension n x k, where j=1,2,...k, i=1,2,3,...,n.  

Bootstrapping Regression Algoritm. Here, two approachs for bootstrapping 
regression methods were given. The coise of either methods depends upon the regressors 
are fixed or random. If  the regressors are fixed, the bootstrap uses  resampling of the error 
term. If the regressors are random, the bootstrap uses  resampling of  observation sets wi 
(Stine, 1990; Shao, 1996).  

Bootstrap Based On The Resampling Observations. This approach is usually 
applied when the regression models built from data have regressors that are as random as 

the response. Let the (k+1)x1 vector )'',( jiii xyw =  denote the values associated with ith 

observation. In this case, the set of observations are the vectors (w1,w2,...,wn). The bootstrap 
procedure based on the resampling observations is as follows. 

1(o). Draw a n sized  bootstrap sample (w1
(b),w2

(b),...,wn
(b)) with replacement  from the 

observations giving 1/n probability each wi values and label the elements of each vector 

)',( )()()( b
ji

b
i

b
i xyw = , where j=1,2,...k, i=1,2,...n. From these form the vector 

)',...,,( )()(
2

)(
1

)( b
n

bbb
i yyyY =  and the matrix )',...,,( )()(

2
)(

1
)( b

jn
b

j
b

j
b

ji xxxX =  

2(o). Calculate the OLS coefficients from the bootstrap sample: 
)()'(1)()'()1( )(ˆ bbbbb YXXX −=β  (1) 

3(o). Repeat steps 1 and 2  for r=1,2,...,B, where B is the number of repetition. 

4(o). Obtain the probability distribution (F(
)(ˆ bβ )) of bootstrap estimates 

)1(ˆ bβ , )2(ˆ bβ ,..., )(ˆ bBβ  and use the (F(
)(ˆ bβ ))  to estimate regression coefficients, variances 

and confidence intervals as follows. The bootstrap estimate of regression coefficient is 

the mean of the distribution F(
)(ˆ bβ ) (Fox,1997),    

)(

1

)()( ˆ/ˆˆ br
B

b

brb B βββ ==∑
=

 (2) 

5(o). Thus, the bootstrap regression equation is  

εβ += )(ˆˆ bXY   (3) 

where )(ˆ bβ is unbiased estimator of β  (Shao,1995). 

An illustrative example that presents how the regression parameters are estimated 
from the bootstrap based on the the resampling observations was given in Table 1. 

Bootstrap Based On The Resampling Errors. If the regressors are fixed, as in 
desing experiment, then the bootstrap resampling must preserve that structure. The 
bootstrap procedure based on the resampling errors as follows. 
1(e). Fit the least squares regression equation for full sample.   

2(e). Calculate the ie  values ( iii YYe ˆ−= ). 

3(e). Draw a n sized bootstrap random sample with replacement (e1
(b),e2

(b),...,en
(b)) from the ie  

values calculated in step 2(e) giving 1/n probability each ie  values(Stine, 1985; 1990; 

Wu,1986) 
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4(e). Compute the bootstrap Y values by adding resampled residuals onto the ordinary least 
squares regression fit, holding the regression desing fixed(Liu,1988; Leger et al,1992): 

)()( ˆ bb eXY += β  (4) 

5(e). Obtain least squares estimates from the 1th bootstrap sample:  
)(/1/)1( )(ˆ bb YXXX −=β     (we need Y*)  or (5) 

         = )(/1/ )(ˆ beXXX −+β   (we don not need Y*) (6) 

6(e). Repeat steps 3(e),4(e) and 5(e) for r=1,2,...,B, and proceed as in resampling with random 
regressors  4(o) and 5(o).  

The bootstrap bias, variance, confidence and percentile interval. The 
bootstrap bias equals, 

ββ ˆˆˆ )( −= b
bsabi  (7) 

(Further discussion are described in Efron and Tibshirani, 1993). The bootstrap variance from 

the distribution F(
)(ˆ bβ ) are calculated by (Liu, 1988; Stine 1990) 

( )( ) )1/(ˆˆˆˆ)ˆvar(
1

)()()()()( −⎥⎦
⎤

⎢⎣
⎡ ′

−−=∑
=

B
B

b

bbrbbrb βββββ ,      r=1,2,...,B (8) 

The bootstrap confidence interval by normal approach is obtained by 

)ˆ(ˆ)ˆ(ˆ )(
2/,

)()(
2/,

)( b
epn

bb
epn

b StSt βββββ αα ∗+<<∗− −−  (9) 

where tn-p,�/2 is the critical value of t with probability α/2 the right for n-p degrees of 

freedom; and Se( )(ˆ bβ ) is the standard error of the )(ˆ bβ . If sample size is n ≥30, then Z-

distribution values are used instead of t in estimation of confidence intervals (Diciccio and 
Tibshirani, 1987). 

A nonparametric confidence interval named percentile Interval can be constructed 

from the quantiles of the bootstrap sampling distribution of )(ˆ bβ . The (α/2)% and (1-α/2)% 

percentile interval is  

)(
)(ˆ lower

brβ  < β < )(
)(ˆ upper

brβ  (10) 

where  )(ˆ brβ  is the ordered bootstrap estimates of regression coefficient from Equation  2 or 

5, lower=(α/2)B, and upper = (1-α/2)B. 
 

Jackknifing Regression Algoritm. Here, two algoritm for Jackknifing regression 
models based on the resampling observations were given. These approachs are usually 
applied when the regression models built from data have fixed explanatory variables. There 
are two cases of jackknife resampling. First of them is based on the deleting single case from 
the original sample (delete one jackknife), and second is based on the deleting multiple case 
from the original sample (delete d jackknife) sequentially (Efron and Gong, 1983; Wu, 1986; 

Shao and Tu, 1995). Let the px1 vector )'',( jiii xyw = , (i=1,2,…n) denote the values 

associated with ith observation. In this case, the set of observations are the vectors 
(w1,w2,...,wn). 

Steps of The Algoritms for Delete-One  Jackknife Regression. The jackknife 
procedure based on delete-one (do) is as follows. 
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1(do). Draw n sized sample from population randomly and label the elements of the vector 

)',( jiii XYw =  as the vector )',...,,( 21 ni yyyY =  and the matrix 

)'...,,,( 321 jnjjjji xxxxX =  where j=1,2,...k, i=1,2,3,...,n.  

2(do). Omit first row of the vector )',( jiii XYw =  and label remaining n-1 sized observation 

sets )',...,( )()(
2

)( J
n

JJ
i yyY =  and )'...,,( )()(

3
)(

2
)( J

jn
J

j
J

j
J

ji xxxX =  as delete-one Jackknife sample 

(w1
(J)) and estimate the OLS regression coefficients )( 1ˆ Jβ from (w1

(J)). Then, omit second row 

of the vector )',( jiii XYw =  and label remaining  n-1 sized observation sets 

)'...,,( )()(
3

)(
1

)( J
n

JJJ
i yyyY =  and )',...,,( )()(

3
)(

1
)( J

jn
J

j
J

j
J

ji xxxX =  as w2
(J) and estimate the OLS 

regression coefficients )( 2ˆ Jβ . Similarly, omit each one of the n observation sets and estimate 

the regression coefficients as 
)(ˆ iJβ  alternately, where 

)(ˆ iJβ  is Jackknife regression 

coefficient vector estimated after deleting of ith observation set from wi. 

3(do). Obtain the probability distribution F(
)(ˆ Jβ ) of Jackknife estimates 

)()()( ˆ,...,ˆ,ˆ 21 nJJJ βββ   

4(do). Calculate the jackknife regression coefficient estimate which is the mean of the F(
)(ˆ Jβ ) 

distribution (Fox,1997) as;   

n
n

i

JJ i /ˆˆ
1

)()( ∑
=

= ββ =
)(ˆ iJβ  (11) 

5(do). Thus, the delete-one Jackknife regression equation is  

εβ += )(ˆˆ JXY  (12) 

An illustrative study which shows how the delete-one jackknife regression parameters 
are estimated was given in Table 2. 

Steps of The Algoritms for Delete-d Jackknife Regression. The jackknife 
procedure based on delete-d (dd) is as follows. 
1(dd). Draw n sized sample (w1,w2,...,wn) from population randomly and devide the sample 
into s independent groups of which size is d. 
2(dd). Omit first d observation set from full sample at a time and estimate the OLS coefficients 

)( 1ˆ Jβ  from (n-d) sized remaining observation set called delete-d jackknife sample (Wu, 

1986).   
3(dd). Omit second d observation set from full sample at a time and estimate the OLS 

coefficients 
)( 2ˆ Jβ from (n-d) sized remaining observation set. 

4(dd). Omit each d of the n observation sets and estimate the regression coefficients as 
)(ˆ kJβ  

alternately, where 
)(ˆ kJβ  is jackknife regression coefficient vector estimated after deleting of 

kth d observation set from full sample. Thus, ( )n
ds =  delete-d jackknife samples are 

obtained, k=1,2,…,s. 
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6(dd). Obtain the probability distribution F(

)(ˆ Jβ ) of delete-d jackknife estimates 

)()()( ˆ,...,ˆ,ˆ 21 sJJJ βββ   

7(dd). Calculate the jackknife regression coefficient estimate which is the mean of the F(

)(ˆ Jβ ) 

distribution as;   

)(

1

)()( ˆ/ˆˆ kk J
s

k

JJ s βββ ==∑
=

 (13) 

8(dd). Thus, the delete-d Jackknife regression equation is  

εβ += )(ˆˆ JXY  (14) 

 
Jackknife bias, variance, confidence and percentile interval. The jackknife 

bias, variance and confidence intervals are estimated by using the following equations from  

F(
)(ˆ Jβ ) distribution (Miller, 1974). 

The jackknife bias equals, 

)ˆˆ)(1()ˆ(ˆ )( βββ −−= J
J nsabi  (15) 

The jackknife variance equals, 

( )( )′−−
−

= ∑
=

)()(

1

)()()( ˆˆˆˆ)1()ˆvar( JJi
n

i

JJiJ

n
n βββββ  (16) 

where 
)(ˆ Ji

jβ  is the estimate produced from the replicate with ith observation set or jth group 

deleted (Friedl and Stampfer, 2002a).  
Jackknife (1-α) 100 % confidence interval equals (Efron and Tibshirani, 1993). 

)ˆ(ˆ)ˆ(ˆ )(
2/,

)()(
2/,

)( J
epn

JJ
epn

J StSt βββββ αα ∗+<<∗− −−  (17) 

where tn-p, α/2 is the critical value of t with probability α/2 the right for n-p degrees of 

freedom; and Se( )(ˆ Jβ ) is the standard error of the )(ˆ Jβ . 

The jackknife percentile Interval can be constructed from the quantiles of the 

jackknife sampling distribution of )(ˆ Jβ . The (α/2)% and (1-α/2)% percentile interval is  

)(
)(ˆ lower

Jβ  < β < )(
)(ˆ upper

Jβ  (18) 

where  )(ˆ Jβ  is the ordered jackknife estimates of regression coefficient from Equation  11 or 

13, lower=(α/2)n, and upper = (1-α/2)n. 

 
Results 
 

First, the ordinary least squares regression model was fitted to data given in Figure 1 
and the results of the ordinary least squares regression was summarized in Table 1. The 
regression of FA on TL and OL is significant as result of variance analysis (P<0.01**). 
According to the t-tests for significance of regression coefficients, all of the regression 
coefficients are significant (P<0.01). 
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Table 1. The summary statistics of regression coefficients for OLS regression 

Variables β̂  S.E.( $β ) t Sig. 
95 % Confidence  

Interval  

Constant -2.16133 0.178 -12.126 0.000 -2.4538, -1.8682 
TL 0.08336 0.034 2.421 0.017 0.0271, 0.1389 
OL 0.49573 0.084 5.913 0.000 0.3578, 0.6342 
R2=0.867, N=100, s2=0.233, SSE=31.491, F=442.3** 
 
The data and fitted line was given in Figure 1. 

 
Figure 1. The data and fitted OLS regression line 

 
The illustration of the bootstrap (B=10000 bootstrap samples, each of size n=100) 

and the jackknife (jackknife samples, each of size n-1=100-1=99) regression procedure, 
from the data given in Figure 1, calculating the bootstrap and jackknife estimates of the 
regression parameters for each sample are shown in Table 2 and 3.  

 



  
Statistical Research by Surveys: Case Studies,  

Constraints and Particularities 

 
195 

Table 2. The illustration of the bootstrap (B=10000 bootstrap samples, each of size n=100) 
regression procedure from the data given in Figure 1, calculating the bootstrap 
estimates of the regression parameters for each sample for fish age model 

r Variables w1
(b), w2

(b), w3
(b), … W100

(b), 
)(ˆ b

oβ  
)(

1
ˆ bβ  

)(
2

ˆ bβ  

FA(year)(Y) 1.16 1.84 0.92 ... 3.41 
TL(cm) (X1) 10.00 13.90 10.00 ... 19.7 1 

OL(mm) (X2) 4.10 5.70 4.10 ... 8.10 

-2.183 0.083 0.487 

FA(year)(Y) 5.08 0.92 2.25 ... 5.08 
TL(cm) (X1) 22.10 10.00 15.90 ... 22.10 2 

OL(mm) (X2) 9.10 4.10 6.50 ... 9.10 

-2.179 0.081 0.495 

FA(year)(Y) 3.16 2.08 0.08 ... 4.25 
TL(cm) (X1) 20.70 13.00 9.30 ... 25.90 3 

OL(mm) (X2) 8.50 5.40 4.10 ... 10.90 

-2.191 0.080 0.491 

. 

. 

. 

. 

. 

. 

. 

. 

. 

. 

. 

. 

. 

. 

. 

. 

. 

. 

. 

. 

. 

. 

. 

. 

. 

. 

. 

. 

. 

. 
FA(year)(Y) 0.08 4.16 5.08 … 0.92 
TL(cm) (X1) 9.30 21.20 22.10 … 10.00 10000 

OL(mm) (X2) 4.10 8.50 9.10 … 4.10 

-2.162 0.084 0.498 

)(

1

)()( ˆ/ˆˆ br
B

b

brb B βββ == ∑
=

 -2.1589 0.0834 0.4954 

 
Table 3. The illustration of the jackknife (jackknife samples, each of size n-1=100-1=99) 

regression procedure from the data given in Figure 1, calculating the jackknife 
estimates of the regression parameters for each sample for fish age model 

Observation sets )(J
iw  Variables 

1 2 3 … 100 
)(ˆ J

oβ  
)(

1
ˆ Jβ  

)(
2

ˆ Jβ  

FA(year)(Y) 0.92 0.08 ... 5.08 
TL(cm) (X1) 10.00 9.30 ... 22.10 1 

OL(mm) (X2) 

omitted 

4.10 4.10 ... 9.10 

-2.192 0.084 0.497 

FA(year)(Y) 1.16 0.08 ... 5.08 

TL(cm) (X1) 10.00 9.30 ... 22.10 2 

OL(mm) (X2) 4.10 

omitted 

4.10 ... 9.10 

-2.176 0.084 0.497 

FA(year)(Y) 1.16 0.92 ... 5.08 
TL(cm) (X1) 10.00 10.00 ... 22.10 3 

OL(mm) (X2) 4.10 4.10 

omitted 

... 9.10 

-2.122 0.080 0.498 

. 

. 

. 

. 

. 

. 

. 

. 

. 

. 

. 

. 

. 

. 

. 

. 

. 

. 

. 

. 

. 

. 

. 

. 

. 

. 

. 

. 

. 

. 
FA(year)(Y) 1.16 0.92 0.08 … 
TL(cm) (X1) 10.00 10.00 9.30 … 100 

OL(mm) (X2) 4.10 4.10 4.10 … 

omitted -2.141 0.083 0.493 

100/ˆˆ
1

)()( ∑
=

=
n

i

JJ io ββ  -2.1613 0.0834 0.4957 

 
The summaries of the some bootstrap and jackknife values of regression coefficients 

are presented in Table 4.   
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Table 4. The summary statistics of the regression coefficients for bootstrap and jackknife 

regression (n=100, B=10000) 

 Variables Observed Average S.E.  Bias  
95% Confidence  

Interval  

5%, 95%  
Persentile  
Interval  

Constant -2.16133 -2.1589 0.18273 0.002457 -2.459, -1.858 -2.460, -1.850 

TL 0.08336 0.0834 0.04229 0.000069 0.0138, 0.1529 0.0137, 0.153 

Bo
ot

st
ra

p 
 

OL 0.49573 0.4954 0.10250 -0.000333 0.3267 ,0.6640 0.3290, 0.663 

Constant -2.16133 -2.16132 0.18733 0.0007837 -2.469, -1.853 -2.19, -2.13 

TL 0.08336 0.08335 0.04326 -0.0005290 0.0122, 0.1545 0.078, 0.089 

Ja
ck

kn
ife

  

OL 0.49573 0.49574 0.10488 0.0013688 0.3232, 0.6683 0.483, 0.506 

 
 
B=10000 bootstrap samples are generated randomly to reflect the exact behavior of 

the bootstrap procedure and the distributions of bootstrap regression parameter estimations 

( )(ˆ bβ ) are graphed in Figure 2(a), 2(b), 2(c). The histograms of the bootstrap estimates 

conform quite well to the limiting normal distribution for all regression coefficients. Hence, 
the confidence intervals should therefore be based on that distribution, where B is sufficiently 
large(B=10000). And jackknife samples are generated omitting each one of the n 

observation sets and estimated the regression coefficients as 
)(ˆ iJβ . To reflect the exact 

behavior of the jackknife procedure and the distributions of jackknife regression parameter 

estimations (
)(ˆ iJβ ) are graphed in Figure 2(d), 2(e), 2(f). The histograms of the jackknife 

estimates conform quite atypical to the limiting normal distribution for all regression 
coefficients.  

 
The bootstrap standard errors of the TL and OL coefficients are substantially larger 

than the estimated asymptotic OLS standard errors, because of the inadequacy of the 
bootstrap in small samples (Fox, 1997, Karlis, 2004). The confidence intervals based on the 
bootstrap standard errors are very similar to the percentile intervals of the TL and OL 
coefficients; however, the confidence intervals based on the OLS standard errors are quite 
different from the percentile and confidence intervals based on the bootstrap standard 

errors. Comparing the bootstrap coefficients averages
)(ˆ br

oβ , 
)(

1
ˆ brβ  and 

)(
2

ˆ brβ  with the 

corresponding OLS estimates oβ̂ , 1β̂  and 2β̂ shows that there is a little bias in the 

bootstrap coefficients. 
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(a) 

 
(d) 

 
(b) 

 
(e) 

 
(c) 

 
(f) 

Figure 2. Histogram of bootstrap (B=10000, (a), (b), (c)) and jackknife ((d), (e), (f)) 
regression parameter estimates.  

 
The shape of these graphs show that a histogram of the replicates with an overlaid 

smooth density estimate and the skewness of the distribution of regression parameter 
estimate from the bootstrap and jackknife replicate. A solid vertical live is plotted at the 
observed parameter value, and a dashed vertical line at the mean of the replicates 
 

Discussion and conclusions 
 

It is known from the statistical theory of the bootstrap that a finite total of nn possible 
bootstrap samples exist. If it was computed the parameter estimates for each of these nn 
samples, it would obtain the true bootstrap estimates of parameters but such extreme 
computation is wasteful and unnecessary (Stine, 1990). By making B large enough, it is seek 
to ensure that the bootstrap estimates of the regression parameter is close to the true 
bootstrap estimates of parameters which based on the all nn bootstrap samples (Fox, 1997). 
It was suggested the bootstrap replications sufficient  to be for estimating of variance 50 ≤ B 
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≤100, B≅1000 for estimating of standard errors, perhaps it is not enough for confidence 
intervals, (Leger et al, 1992; Efron, 1990, Karlis, 2004). The number of bootstrap 
replications B depends on the application and size of sample and computer availability. 

Disadvantages of bootstrap method are; i) F̂ ( bootstrap distribution of β̂ ) is not a good 

approximation of F in case of small data sets and existing of outliers in the sample, ii) so 
bootstrap is based on the independent assumption that it is not suggested for dependence 
structures like time series models, iii) bootstrap based on the error procedure assumes the 
fitted regression model is correct and the errors are identically distributed but is preferable to 
the bootstrap based on the resampling of observation, for violating the assumption for 
constant design matrix (Karlis, 2004). In addition, the most important advantages of the 
bootstrap regression method are to need smaller sample than ordinary least squares method 
and its practical performance is frequently much better but this is not guaranteed (Hawkins 
and Olive, 2002). Because of this it is a mistake to hope that bootstrap regression method 
always gives confident results. The confidence depends on the structure of the data and 
distribution function.  

Fan and Wang, (1995) stated that due to the fact that sample size does impose a 
limit on the number of resamples, the jackknife may not be appropriate for small samples, 
but when the sample size is large, the bootstrap and jackknife would give similar results. 
Heltshe and Forrester, (1985) also reported that not only sample size but also the total 
number of individuals in the sample is important in improving the jackknife estimators. 
Hence, the jackknife bias, the standard errors and confidence intervals of the TL and OL 

coefficients based on the distribution F(
)(ˆ Jβ ) are substantially larger than the bootstrap and 

estimated asymptotic OLS standard errors. The jackknife percentile intervals also are larger 
than to the bootstrap percentile intervals of the TL and OL coefficients.  

The bootstrap and jackknife methods estimate the variation of a statistic from the 
variation of that statistic between sub samples, rather than from parametric assumptions and 
may yield similar results in many situations. In addition, they provide a way of decreasing 
bias and obtaining standard errors in situations where the standard methods might be 
expected to be inappropriate. But when bootstrap is used to estimate the standard error of a 
statistic, it gives very little different results when repeated on the same data, whereas the 
jackknife gives exactly the same result each time. The bootstrap is a more general technique 
and preferred to the jackknife. However the jackknife is easier to apply to complex sampling 
schemes than the bootstrap. Application of both techniques depends on development of 
computer technologies and would also more frequently use if statistical computer packages 
featured these analyses. 

As a conclusion, bootstrap method is preferable in linear regression because of some 
theoretical properties like having any distributional assumptions on the residuals and hence 
allows for inference even if the errors do not follow normal distribution. 
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