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Abstract: A system to be designed and developed is composed of several sub-systems with 
complex configuration.  The relationship between the sub-systems and the system cannot be 
fully expressed in analytical terms and has a high degree of uncertainty.  Each sub-system can 
be designed and developed independently and is a subject of several possible measurable 
versions including both the cost of designing and creating the sub-system and its reliability.  
The problem is to assign reliability and cost requirements in the system design phase to all sub-
systems,  in order to: 
• achieve a specified reliability goal for the system,  and 
• minimize the total costs of designing and creating of all the sub-systems. 
The corresponding dual problem is being solved as well.  The third problem centers on 
optimizing the system’s structure in order to maximize the system’s utility by means of 
implementing local parametrical reliability and cost values. 
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1. Introduction 
 

The solution of engineering design problems generally requires a compromise 
between several objectives, including a trade-off among cost and reliability parameters. 
Those problems become extremely actual in cases when an overall compound system is 
composed of several sub-systems. The objective is to use the reliability model to assign 
reliability to the sub-systems so as to achieve a specified reliability goal for the system. The 
optimization model may be to minimize the total costs of developing the sub-systems  
subject to the condition  that the reliability of the system must meet a certain pregiven level  
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(the direct problem) or to maximize the reliability subject to certain cost constraints  (the dual 
problem).  However, it can be well-recognized that most of the publications on that area 
deal with relatively simple system configurations (e.g. for series and parallel systems) where 
the functional relationship between the sub-systems’ failures and the top system failures is 
well known (see, e.g. [2, 4, 5]3). In cases when this relationship is complex for other system 
configurations, e.g. when the linkage between the sub-systems is carried out under random 
disturbances,  the number of such publications remains very scanty. 

We will consider a complicated system to be designed which is composed of several 
sub-systems. The functional relationship between the sub-systems and the system outcome 
parameters  can be formalized only by means of a simulation model  which comprises a 
variety of random parameters.  Sub-systems’ failures are not independent,  and the linkage 
between sub-systems is carried out via various information signals.  Each sub-system can be 
designed and developed independently  and is a subject of several alternative measurable 
versions,  including the cost of designing and creating the sub-system and its reliability. 

The problems to be considered are as follows:  in the system design phase to assign 
optimal reliability and cost parameters  (versions)  to all sub-systems  in order to minimize 
the total costs of designing and creating,  subject to the specified reliability target for the 
system (the direct problem),  and to optimize the sub-systems’ reliability and cost parameters 
in order to maximize the system’s reliability subject to the restricted total costs  (the dual 
problem). 

The solution of both problems is based on a two-level heuristic algorithm.  At the 
upper level a search of optimal sub-systems’ parameters is undertaken, while the lower level 
is faced with numerous realization of the simulation model to obtain representative statistics.  
The outcome data of the search procedure at the upper level is the input data for the 
simulation model. 

The results obtained are later on considered within the general problem of the 
designed system standards harmonization. We formulate an optimization problem to assign 
optimal versions to all sub-systems in order to provide harmonization to the system reliability 
and cost standards. 
 

2. Notation 
 

Let us introduce the following terms: 
 

S  - the system to be designed and created; 

SSi ⊂  - the  i –th sub-system entering  S ,  ni1 ≤≤ ; 

n   - the number of sub-systems; 

ijS  
- the  j –th version of designing sub-system  iS ,  imj1 ≤≤ ; 

im  - the number of possible versions of designing and creating the sub-system  iS ; 

ijC  - the average cost of designing and developing  ijS   (pregiven); 

ijR  - reliability value of sub-system  ijS   (pregiven); 

SM  - simulation model with input sub-systems' reliabilities and the outcome system 
reliability; 
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{ }iaR  - system reliability value obtained by means of simulation,  { } { }ii aSMaR = ,  

where integer value  jai = ,  ii ma1 ≤≤ ,   is the ordinal number of version  

j   of sub-system  ijS ,  ni1 ≤≤ ; 

C  - the total costs of designing and creating the system,  ∑
=

=
n

1i
iai

CC ; 

∗R  - pregiven specified system reliability; 

∗C  - pregiven restricted total cost amount  to design and create system  S ; 

CΔ  - accuracy estimate  (pregiven); 

Rα  - parametrical utility  “weight”  of the system reliability; 

Cα  - parametrical utility  “weight”  of the system total costs. 

 

3. The Problem's Formulation 
 

The direct cost-optimization problem  is as follows: 

Determine the optimal set of integer values  ia ,  ni1 ≤≤ ,  which requires the 

minimal amount of costs 

{ }
∑
=

n

1i
ia

a i
i

CniM  (1) 

subject to 

{ } { } *
ii RaSMaR ≥= ,     ni1 ≤≤ ,     ii ma1 ≤≤ . (2) 

The dual problem  is as follows: 

Determine the optimal set  { }ia ,  ni1 ≤≤ ,  in order to maximize the system 

reliability by means of simulation 

{ }
{ }i

a
aRxaMR

i

=  (3) 

subject to 

*
n

1i
ia CC

i
≤∑

=
. (4) 

Note that the costs of unifying sub-systems  { }iS   into a complex system  S   are 

assumed to be negligibly small in comparison with the total costs of designing and creating 
all those sub-systems. 

It can be well-recognized  that if the number of sub-systems  n ,  as well as the 

number of alternative options  im   to design sub-systems  iS ,   is high enough,  both 

problems  (1-2)  and  (3-4)  are NP-complete  [3].  Thus,  an optimal solution can be 
obtained only by means of a look-over algorithm  that checks the feasibility of each of 

∏
=

n

1i
im   combinations  { }ia .   If the number of combinations is high enough  and taking 

into account  that each combination requires numerous simulation runs,  solving both 
problems  by means of precise classical methods meets unavoidable computational 
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difficulties.  To avoid this obstacle,  we suggest a high-speed two-level approximate heuristic 
algorithm.  At the bottom level a simulation model to realize the functional relationship 

between reliability values of local sub-systems  iS ,  is implemented.  At the upper level a 

search procedure to determine optimal values  { }ia ,   has to be carried out. 

Note,  in conclusion,  that for any sub-system  iS   increasing its version number  

jai =  results in increasing both costs  ijC   and the reliability value  ijR .  Thus,  the  im –th 

version has the highest reliability  
iimR ,  as well as requires the highest costs  

iimC .   If for  

each  iS    its  highest version has been chosen,  it can be well-recognized  that the overall 

system  S    has the highest possible reliability  { }
im

** aSMR = ,  ni1 ≤≤ .   Thus,  if 

relation  ∗∗∗ < RR   holds,  problem  (1-2)  has no solution. 

We will assume henceforth  that both relations 

{ } { } *
mm RaSMaR

ii
≥=  (5) 

and 

*
n

1i
1i CC ≤∑

=
 (6) 

hold. 
 

4. Two-Level Heuristic Algorithm for Solving the Direct Cost- 
Optimization Problem 
 

As outlined above,  the system reliability  { }iaSMR =   is a complicated non-

linear function of values  { }ia .  This enables solution of problem  (1-2)  by using the cyclic 

coordinate search algorithm  ( CCSA )  with optimized variables  { }ia   [6].  The justification 

of using  CCSA   is outlined in [1].  To solve the problem,   SM   is implemented to obtain 

representative statistics for calculating { }iaSMR = .  The expanded step-by-step 

procedure of   CCSA   is as follows: 

Step 1. Choose an initial search point  { }n21
)0(

m,...,m,mX = .   According to  (5),  

search point  
)0(

X   is a feasible solution. 
  

Step 2. Start using CCSA   which minimizes value  ∑
=

n

1i
iai

C  with respect to the coordinate 

variables.  Decrease the first coordinate  1
)0(

1 mx =   by a constant step equal  1 ,  

i.e.,   )1(
1

)0(
1 x1x ⇒− ,   while all other coordinates  22 mx = , 33 mx = , … , 

nn mx =   are fixed  (see  Step 1)  and remain unchanged.  In the course of under- 



  
Quantitative Methods Inquires 

 
472 

taking the search steps  the feasibility of every routine search point  X   is 

examined by performing numerous simulation runs by means of the  SM   in order 
to check relation 

  
 { } *RXSM ≥ . (7) 

  
 The process of decreasing the first coordinate   x1   terminates in two cases: 

-   if for a certain value  1jx1 ≥=   relation  (7)  ceases to hold; 

-   if for all values  11 mx1 ≤≤   relation  (7)  remains true. 

For the first case  we set  1jx1 += ,   while in the second case  1x1 =   is fixed. 

  
Step 3. After the first coordinate  1x   is optimized in the course of carrying out  Step 2,  we 

proceed with the  CCSA   by decreasing the second coordinate  2x   by a constant 

step,  i.e.  )1(
2

)0(
2 x1x ⇒− ,   while all other coordinates,  namely,  1x   (the new 

optimized value at  Step 2),  n3 x,...,x   are fixed and remain unchanged.  After 

examining the coordinate  2x   by a step-wise decrease via simulation,  its newly 

obtained value is fixed,  similarly to  1x ,  and we proceed with the third coordinate  

3x ,  and so forth,  until  nx   is reached and checked by the constant step 

decreasing procedure. 
  

Step 4. After all coordinates  { }ix   are checked by means of the  CCSA   (first iteration),  

the process is then repeated starting with  1x   again.  The  CCSA   terminates 

after a current iteration does not succeed in bringing any changes to the search 

point   ( )n21 x,...,x,xX = .  Thus,  the  n -dimensional search point  X   is 

then taken as the quasi-optimal solution of the direct problem  (1-2). 
 

Call henceforth the above algorithm of  CCSA   to solve the direct problem  (1-2) -  
Algorithm I.  Note that in the course of implementing  Algorithm I  the total costs   

∑
=

=
n

1i
iai

CC   decrease monotonously at each step  { }iaX = . 

After obtaining an approximate solution  { }iaX =   we suggest to undertake a 

corrective random search procedure designated henceforth as  Algorithm II.  The enlarged 
step-by-step procedure of  Algorithm II  is as follows: 

Step 1. Choose an initial search point  { }i
)0(

aX =   which has been determined in the 

course of implementing  Algorithm I.  Denote,  in addition,  the required total costs 

to design the system with   { }ia ,   by 
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∑
=

=⎟
⎠
⎞

⎜
⎝
⎛ n

1i
ia

)0(

i
CXC . (8) 

  

Step 2. Simulate  n   random independent values  ni1,pi ≤≤ ,   uniformly distributed 

in the interval  [ ]1,1 +− . 

  

Step 3. Introduce a random step   XXX
)0()1(

Δ+=    obtained by 

  
 ( )n21

)0()1(
,...,,,XX βββββ =+= , (9) 

  
 where local steps equal  1   and 
  
 

⎩
⎨
⎧

<−
≥+

=
0pif1
0pif1

i

i
iβ  ,  

  
 

subject to additional constraints for the  i –th coordinate  ni1,X
)1(

i ≤≤ , 

  
 

⎩
⎨
⎧

<=
≥=

=
.0pand1Xif1

0pandmXifmX
i

)0(
i

ii
)0(

ii)1(
i   (10) 

  

Step 4. Calculate by means of the  SM   the frequency rate  
⎭
⎬
⎫

⎩
⎨
⎧ )1(

XR   and compare 

the latter with  ∗R .   If   ∗≥
⎭
⎬
⎫

⎩
⎨
⎧ RXR

)1(
  apply the next step.  Otherwise go to  

Step 6. 
  

Step 5. Calculate the total costs to design the system with  { }ii
)1(

aX β+= .   If relation 

  
 

⎟
⎠
⎞

⎜
⎝
⎛=<=⎟

⎠
⎞

⎜
⎝
⎛ ∑∑

==
+

)0(n

1i
ia

n

1i
a,i

)1(
XCCCXC

iii β  (11) 

  
 holds,  go to  Step 7.  Otherwise apply the next step. 
  

Step 6. Set  ⎟
⎠
⎞

⎜
⎝
⎛ )1(

XC   equal to  K ,   where  K   is a very large number  (take,  e.g. 

1710K = ).   Go to the next step. 

  
Step 7. Repeat  Steps  2-6  Z   times,  i.e.,  undertake  Z   independent steps  
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⇒+ XX
)0(

Δ   
)1(

X  . 

  

Step 8. Determine the minimal cost value  ⎟
⎠
⎞

⎜
⎝
⎛ )1(

XC   from  Z   values  (11). Denote it by  

( )1C ∗ . 
  

Step 9. If  ⎟
⎠
⎞

⎜
⎝
⎛≥

)0()1(* XCC   the search process terminates.  That means that search 

point  
)0(

X   cannot be improved.  Go to  Step 11.   In case  ⎟
⎠
⎞

⎜
⎝
⎛<

)0()1(* XCC   

apply the next step. 
  

Step 10. Set   ⎟
⎠
⎞

⎜
⎝
⎛⇒⇒

)0()1(*)0()1(
XCC,XX ,   and go to  Step 2. 

  

Step 11. Take  
)0(

X ,   together with its corresponding budget value  ⎟
⎠
⎞

⎜
⎝
⎛ )0(

XC ,  as the 

quasi-optimal solution of  Algorithm II. 
 

Note that since using a search step of pregiven length in the  n -dimensional space 

with a finite number of feasible solutions cannot result in an infinite monotonic convergence,  
the random search process always terminates. 

As outlined above,  we suggest to use  Algorithm II  on condition that the initial 

search point  
)0(

X   is determined by using  Algorithm I. 
 

5. The Dual Cost-Optimization Problem 
 

The step-by-step algorithm to solve problem  (3-4)  (call it henceforth  Algorithm III)  
is based on the bisection method  [8]  and runs as follows: 
 
Step 1. Calculate reliability values by means of the  SM  

  
 { }1,...,1,1SMRmin = , (12) 

  
 { }n21max m,...,m,mSMR = . (13) 

  
Step 2. Calculate cost values 
  
 

∑
=

=
n

1i
1imin CC , (14) 
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∑
=

=
n

1i
immax i

CC . (15) 

  
 Note that relation  *

min CC ≤   holds,  otherwise problem  (3-4)  has no solution.  

In case  max
* CC ≥   there is a trivial solution:  { } { }ii ma = .   Thus,  we will 

assume that a reasonable relation 
  
 

max
*

min CCC ≤≤  (16) 

  
 holds. 

 
Step 3. Calculate 
  
 ( )maxmin RR5.0'R +⋅= . (17) 

  

Step 4. Solve direct cost-optimization problem  (1-2)  with  ∗= R'R .   Denote the 

minimal cost objective value obtained in the course of implementing  Algorithms  I-

II,   by  'C . 

  

Step 5. Compare values   'C   and  ∗C .   If   C'CC* Δ<− ,   go to  Step 9.  

Otherwise go to  Step 6.   Here  0C >Δ   designates the pregiven problem’s 

solution accuracy  as outlined in  Section 2. 
  

Step 6. Examine relation  *
min C'CC <≤ .   In case it holds,  go to  Step 7.  Otherwise,  

i.e.,  in case  max
* C'CC ≤≤ ,   go to  Step 8. 

  

Step 7. Set   minR'R ⇒  .   Go to  Step 3. 

  

Step 8. Set   maxR'R ⇒ .   Go to  Step 3. 

  

Step 9. Solution  { }ia   of the direct problem  (1-2)  obtained at  Step 4,  is taken as the 

quasi-optimal solution of problem  (3-4). 
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6. Harmonization Models in Designing Compound  
Engineering Systems 
 

As outlined above,  in  Section 1,  engineering design problems generally require a 
compromise between certain parameters of the system to be designed,  e.g. a compromise 
between cost and quality parameters.  If a system to be designed and created is compound 
in nature and consists of several local sub-systems with complex configuration, such a 
compromise may be realized by means of certain optimization problems.  Let us describe 
two different situations which lead to a  “compromise optimization”: 
 
Strategy  A 
A company is faced with designing and creating a new complicated technical system which 
consists of several sub-systems.  The latter have to be designed and further on created at the 
company’s design office.  Each sub-system may be created in several technical versions,  as 
outlined above.  The problem is to determine optimal versions for each sub-system to be 
designed,  in order to: 
• meet the system reliability restriction from below; 
  
• meet the system total cost restriction from above; 
  
• optimize a trade-off function between reliability and cost parameters. 
Both restrictions can be formalized by relations  (2)  and  (4). 
 
Strategy  B 

A highly complicated compound technical system has to be created  (e.g. a new 
aircraft).  The system comprises several sub-systems  (with complex configuration)  which are 
already  manufactured  by several different companies  (and,  quite possible,  in different 
countries). Each company manufactures only one version of a certain sub-system  while 
other companies may produce other versions.  Thus,  each sub-system is available in several 
alternative versions provided to the international market with pregiven cost and reliability 
parameters. The compromise optimization problem is similar to that  outlined above for  
Strategy A. 

It can be well-recognized,  however,  that both from the point of logical 
assumptions and considering the  solution method,  those optimization problems are 

different.  Strategy A  is based on the assumption  that for each sub-system  iS   reducing the 

costs  ijC   results in reducing its reliability level  ijR ,   and vice versa.  This simplifies 

essentially the solution method. 
However,  for  Strategy B  the relation between cost and reliability parameters for 

different competing versions may be entirely different,  since certain sub-systems may be 
produced and purchased in different countries  and thus affected by their domestic policies 
in business and standardization. 

A detailed description of different strategies  (there may be more than two of them),  
together with developing optimization problems and the corresponding methods of solution,  
do not lie within the framework of this  Appendix.  However,  we will show the nature of the  
“compromise optimization”  by an example of  Strategy A. 
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We suggest to formalize the  “compromise optimization”  problem as follows: 

Determine optimal integer values  (versions)  ia   to maximize a  “system priority 

value”  which is composed of local priority functions  ( )RRα   and  ( )CCα  

{ }
{ }[ ] { }[ ]( )iCiR

a
aCaRxaM

i

αα +  (18) 

subject to  (2)  and  (4). 

It goes without saying  that decreasing the total cost  C   increases the 

corresponding priority function  ( )CCα ,   while decreasing reliability value  R   decreases 

value  ( )RRα . 

Thus,  we suggest to introduce the concept of harmonization by means of a 
compromise,  trade-off optimization.  Finally,  we obtain: 
 

{ }
{ }[ ] { }[ ]( )iCiR

a
aCaRxaM

i

αα +   
(19) 

subject to 

{ } *
i RaR ≥ , (20) 

 

{ } *
i CaC ≤ . (21) 

This is a complicated stochastic optimization problem since value  { }iaR   is 

calculated through a simulation model  and can be determined in frequency terms only.  As 

to functions   Rα   and  Cα ,  we suggest to assume  they are deterministic. 

 

7. Monte-Carlo Algorithm for the Harmonization Model 
 

The enlarged step-wise procedure of the suggested problem’s solution is as follows: 
Step 1. Solve cost-optimization problem  (1-2)  by means of  Algorithms I-II.  Denote the 

quasi-optimal solution as  *
n

*
2

*
1 a,...,a,a  . 

  
Step 2. Solve cost-optimization problem  (3-4)  by means of  Algorithm III.   Denote the 

quasi-optimal solution by   **
n

**
2

**
1 a,...,a,a  . 

  

Step 3. Calculate   ∑
=

=
n

1i
ia **

i
C'C . 

  

Step 4. If relation  *C'C >   holds,  problem  (19-21)  has no solution.  Otherwise apply 

the next step. 
  
Step 5. Determine three  n -dimensional areas: 
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• area  I  which comprises  n -dimensional points  { }iaX =   between  =

)1(
X  

{ }1,...,1,1    and    { }*
i

)2(
aX =  ; 

   
 • area  II   which comprises  n -dimensional points  { }iaX =   between  

{ }*
i

)2(
aX =     and    { } )3(**

i Xa =  ; 

   
 • area  III  which comprises  n -dimensional points  { }iaX =   between  

{ }**
i

)3(
aX =     and    { } )4(

m Xa
i

=  . 

   

Step 6. Note that solution  { }*
ia   of problem  (1-2),  as well as solution  { }**

ia ,  are 

approximate ones.  However,  it can be well-recognized that: 
  
 • an overwhelming majority of  n -dimensional points  X   entering area  I  does 

not meet reliability level  ∗R ; 
   
 •  

• an overwhelming majority of  n -dimensional points  X   entering area  III  

does not meet total cost restriction  ∗C . 
   
 Both assertions can be easily checked by simulating points  X   by means of the 

Monte-Carlo method in areas  I  and  III  with coordinates  )1(
iX   and  )3(

iX   as 

follows: 
 

( )1,0U,ni1,1aX ii
*
i

)1(
i ∈≤≤+⎥

⎦

⎤
⎢
⎣

⎡
⋅= ββ  , 

 

( )1,0U,ni1,1amaX ii
**

ii
**

i
)3(

i ∈≤≤+⎥
⎦

⎤
⎢
⎣

⎡
⋅⎟⎟

⎠

⎞
⎜⎜
⎝

⎛
−+= αα  , 

 

where  [ ]x   denotes the whole part of  x   and  ii , βα   are random values 

uniformly distributed in  [ ]1,0 . 

 

Later on,  by means of the  SM ,  the outlined above assertions can be easily 

verified.  Practically speaking, points  X   in areas  I  and  III  do not meet 
restrictions  (20)  and  (21). 
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Step 7. A Monte-Carlo sub-algorithm  (call it henceforth  Algorithm IV)  is suggested to 

solve problem  (19-21)  for area  II.  The sub-steps of  Algorithm IV  are as follows: 
 

Step 7.1. Simulate by means of the Monte-Carlo method points  X   in area  II  with co- 

ordinates  )2(
iX , 

 

( )1,0U,ni1,1aaaX i
*
ii

*
i

**
i

)2(
i ∈≤≤+⎥

⎦

⎤
⎢
⎣

⎡
+⋅⎟⎟

⎠

⎞
⎜⎜
⎝

⎛
−= ββ . 

  

Step 7.2. Check by means of  SM   and   ∑
=

=
n

1i
ia*

i
C'C  restrictions  (20-21).  If at least 

one restriction does not hold  apply  sub-Step 7.1 .  Otherwise go to the next 
sub-step. 

  

Step 7.3. Calculate for point   )2(
iX ,  by means of the  SM   and  ∑

=
=

n

1i
iai

CC ,   system 

priority value   { }( ) ⎟⎟
⎠

⎞
⎜⎜
⎝

⎛
+ ∑

=

n

1i
iaCiaR ii

CaSM αα . 

  
Step 7.4. Undertake a random search outlined in  Algorithm II,  by substituting 

maximization for minimization.  Take the local optimum obtained in the course 
of the random search, as a local solution. 

  
Step 7.5. Check the number of local solutions generated in the course of implementing 

the optimum trial random search method.  If the number of such solutions 

exceeds  N ,   go to the next sub-step.  Otherwise apply  Step 7.1 . 
  
Step 7.6. Choose the maximum of local solutions obtained at  Steps 7.1-7.5.  The result 

should be taken as the approximate solution of the trade-off problem  (19-21). 
 

Note that the above global random search method is highly recommended in  [7]  
and can be considered as an effective one for solving harmonization problems of type  (19-
21). 

As for harmonization problems related to  Strategy B,  using the global random 
search method is less effective.  This is because optimization methods for  Strategy B  may 
deal with a lot of  isolated  n -dimensional points in both areas  I  and  II  (see  Algorithm IV).  

It normally causes much computational troubles to detect those points. 
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8. Conclusions and Future Research 
 
1. The problem of multi-parametrical optimization, i.e., harmonization models, can be 

applied to design an optimal structure for compound engineering systems. Practical 
achievements in that area are outlined in [1]. 
 

2. For single network projects harmonization may be effective by analyzing a PERT-COST 
type project with random activity durations. The project comprises several essential 
parameters  which practically define the quality of the project as a whole: 
• the budget assigned to the project  (C); 
• the project’s due date  (D); 
• the project’s reliability,  i.e.,  the probability of meeting the project’s due date on time  

(R). 
To establish the utility of the project, the concept of the project’s utility may be 
introduced. In order to maximize the project’s utility, a three-parametric harmonization 
model is developed [1]. The model results in a certain trade-off between essential 
project’s parameters and is, thus, a compromise optimization model. The model’s 
algorithm is a unification of a cyclic coordinate search algorithm in the two-dimensional 
area (cost- and time values) and a harmonization model to maximize the project’s 
reliability subject to the preset budget and due date values. The model comprises a 
heuristic procedure to reassign the budget among project’s activities, and a simulation 
model of the project’s realization. 
 

3. Harmonization approaches in Reliability and Safety Engineering can be successfully used 
to develop various cost – reliability optimization models.  The latter are applicable to a 
broad spectrum of hierarchical technical systems with a possibility of hazardous failure at 
the top level and a pregiven multi-linkage of failure elements at different levels. 
 

4. The newly developed harmonization models in Reliability and Safety Engineering cannot 
be compared with any similar research outlined in former publications in the regarded 
area. The existing references do not cover multi-parametrical optimization for hierarchical 
production plants with the possibility of hazardous failures at the top level. 
 

5. The results of our research can be expanded in future for a broad spectrum of other 
parameters - attributes which actually form both the utility and marketability values of the 
newly developed product.  Besides the area of product marketing,  harmonization models 
can be applied as well to unique technical devices which function under random 
disturbances and may trigger hazardous failures.  Thus,  the developed models can be 
applied to various hierarchical organization systems,  e.g.  industrial systems,  project 
management systems,  creating new urban areas,  developing various service systems,  
etc. 
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