

Quantitative Methods Inquires

455

AUTOMATED SOFTWARE TRANSLATION – THEORETICAL
BACKGROUND AND CASE STUDY

Robert ENYEDI 1
PhD, CEO, Numiton Ltd.

E-mail: robert.e@numiton.com , Web-page: http://www.numiton.com

Abstract: The necessity for software migration is presented. The concept of software migrator
is introduced. A generality metric for software translations is proposed. The business feasibility
of automated versus manual migration is studied. nTile PHPtoJava, a working software
migrator, is reviewed.

Key words: software translation; software migrator; programming languages; generality
metrics; PHP; Java

1. Software Translation Overview

The evolution of programming languages has produced a wide variety of
exponents, grouped into generations. Evolving computer hardware together with evolving
operating systems have led to the emergence of new programming languages and to the
marginalization of others. The O'Reilly History of Programming Languages poster [OREI07]2
displays more than 50 major programming languages that have been used in the last 50
years of software development, while Bill Kinnersley's Language List [KINN07] contains over
2500 known programming languages, ranging from the obscure to the widely used.

As a consequence, the allotment of specialists in different programming languages
and architectures has changed over time. A programming language doesn’t disappear, but
once there are no tools to run it on new platforms, the language is less and less used and
specialists are increasingly more difficult to find. This is the case of many COBOL dialects, for
example.

Another cause of language outdating is that in time their features cover less and
less of the current needs – lack of Web support is an example in this sense. That is why new
and improved versions should be continuously developed for languages, their libraries and
tools. When this does not happen, possibly because the vendor is out of business or shifts its
priorities, some languages do get to a dead point. For instance, according to [REED07] the

Quantitative Methods Inquires

456

future of SAP ABAP language is uncertain precisely because a more suitable language (Java)
is available to develop code for SAP systems.

In such situations it becomes necessary to migrate application systems developed
with outdated languages towards modern languages and technologies, more adequate for
business needs and with support from established vendors. The migration process also offers
the possibility of switching the underlying hardware and software platform (e.g. migration
from mainframes to PCs).

While this migration can be accomplished manually by a complete rewrite of the
application system, there are situations when an automated process is more suitable. Some
reasons are detailed in section 4 Economical Feasibility. Automated migration is performed
using specialized products called software migrators.
The concept of software migrator derives from the one of language migration, which refers
to a language transformation without altering semantics. A software migrator is a tool that
translates sentences written in a source language into the semantically equivalent sentences
in a target language. It also emulates the semantic dependencies generated by the libraries
of the application system.
The theoretical background of software migrators is a generalization of the compilers theory.
In this context, a compiler becomes a particular case of software migrator that produces
sentences in a low-level language (assembly or machine code).
Many issues that a software migrator must solve depend on the characteristics of the source
and target languages. These characteristics include:
− generations: for example, migrating from a structured language to an object-oriented

one must provide mechanisms for fully making use of encapsulation, abstraction,
polymorphism and inheritance;

− type systems: migrating from a weakly/dynamically-typed language to a
strongly/statically-typed one requires type inference algorithms;

− execution model: migrating from an interpreted language to a compiled one means that
the migrator must handle dynamic constructs (variables, procedures, dependencies),
error reporting paradigms etc.

This paper presents the theoretical background and business rationale behind the
nTile PHPtoJava software migrator developed by Numiton Ltd. The design and
implementation of this migrator had to take into account all three challenges mentioned
above.

2. nTile PHPtoJava Architecture

PHP is a programming language used for developing most of the small to medium
public Web sites. It is a weakly typed interpreted language with several dynamic capabilities.
Up to version 4 it was a structured language, afterwards being endowed with object-oriented
features.

Java is a general-purpose programming language, widely used for desktop, Web
and mobile applications. It is a strongly typed compiled language, with a pronounced object-
oriented character. The Java Enterprise Edition platform powers most of the medium to large
business applications.

As the name suggests, nTile PHPtoJava is a software migrator from the PHP
language to Java EE. Figure 1 presents its overall architecture.

Quantitative Methods Inquires

457

The software migrator is composed of two main modules: PHPtoTIL and PHPtoJava.
PHP source files are processed by PHPtoTIL and stored in an intermediate representation
called the Translation Intermediate Language - TIL. TILtoJava then turns this intermediate
representation into Java source files, packaged as a JavaEE application.

Further detailing the architecture, PHP2TIL is composed of several submodules, as
follows:

1. PHP Parser – processes the source files based on the PHP grammar rules and builds a
first version of the TIL representation. From this point on, all work is carried out on
this representation;

2. Iterative Processor – the migration is performed in several iterations. Each iteration
uses the already gathered information in order to further refine resolving of entities,
type inference etc.

3. Iteration Controller – this component monitors iterations and decides when the
gathered information can no longer be refined. Control is then transferred to the
post-processor.

4. Post-Processor – performs some finishing touches on the intermediate
representation, such as collecting translation statistics, and finalizing the type
inference.

Throughout its operation PHPtoTIL collaborates with an utility module containing

the interface of the PHP runtime, in order to have a fully resolved TIL model.
TILtoJava simply traverses the well-formed TIL representation and translates it into

appropriate Java constructions. The Java abstract syntax tree (AST) is built in-memory, then
saved as Java source code together with JavaEE support classes and XML descriptors. The
Java implementation of the runtime is also linked to the final application.

A sample translation is presented below. The PHP input consists of the files
interpreterTest.php, included.php and included2.php. This sample code performs a dynamic
PHP include operation depending on the value of a HTTP session variable.

PHP to TIL

TIL to Java

PHP Parser

Iterative Processor

Post-Processor

Iteration Controller

TIL

*.php

*.java
*.xml

TIL Utilities

PHP Runtime
Stub

PHP Runtime
Implementation

(Java)

Figure 1. nTile PHPtoJava architecture

Quantitative Methods Inquires

458

interpreterTest.php:

<?php
echo "Body -> interpreterTest.php\n";
$b = ".php";

if($_SESSION['selector']=="included") {
 $a = 'included';
} else {
 $a = 'included2';
}

$includeResult = require $a.$b;
echo "includeResult =
 $includeResult\n";

?>

included.php:

<?php
echo "Body -> included.php\n";
return 3;
?>

included2.php:

<?php
echo "Body -> included2.php\n";
return 10;
?>

The migrator produces the Java output consisting of the source files

interpreterTest.java, included.java, included2.java and GlobalVars.java. For brevity, the XML
descriptors and some support classes are not presented.

interpreterTest.java:
public class interpreterTest extends NumitonServlet {
 public Object generateContent(PhpWebEnvironment webEnv) throws IOException, ServletException {
 gVars.webEnv = webEnv;
 VarHandling.echo(gVars.webEnv, "Body -> interpreterTest.php\n");
 gVars.b = ".php";
 if (VarHandling.equals(gVars.webEnv, gVars.webEnv._SESSION.getValue(gVars.webEnv,
 "selector"), "included")) {
 gVars.a = "included";
 }
 else {
 gVars.a = "included2";
 }
 gVars.includeResult = new DynamicConstructEvaluator<Integer>() {
 public Integer evaluate() {
 Integer evalResult = null;
 if (VarHandling.equals(gVars.webEnv, gVars.a, "included")
 && VarHandling.equals(gVars.webEnv, gVars.b, ".php")) {
 evalResult = (Integer) PhpWeb.include(gVars, gConsts, example.included.class);
 }
 if (VarHandling.equals(gVars.webEnv, gVars.a, "included2")
 && VarHandling.equals(gVars.webEnv, gVars.b, ".php")) {
 evalResult = (Integer) PhpWeb.include(gVars, gConsts, example.included2.class);
 }
 return evalResult;
 }
 }.evaluate();

 VarHandling.echo(gVars.webEnv, "includeResult = "
 + VarHandling.strval(gVars.webEnv, gVars.includeResult) + "\n");
 return null;
 }

 public interpreterTest() {
 }
}

included.java:
public class included extends NumitonServlet {
 public Integer generateContent(PhpWebEnvironment webEnv) throws IOException, ServletException {
 gVars.webEnv = webEnv;
 VarHandling.echo(gVars.webEnv, "Body -> included.php\n");
 return 3;

Quantitative Methods Inquires

459

 }

 public included() {
 }
}

included2.java:
public class included2 extends NumitonServlet {
 public Integer generateContent(PhpWebEnvironment webEnv) throws IOException, ServletException {
 gVars.webEnv = webEnv;
 VarHandling.echo(gVars.webEnv, "Body -> included2.php\n");
 return 10;
 }

 public included2() {
 }
}

GlobalVars.java:
public class GlobalVars extends GlobalVariablesContainer {
 public GlobalConsts gConsts;

 public GlobalVars() {
 }

 public String b;
 public String a;
 public int includeResult;
}

Apart from objectification, the above sample illustrates some of the advanced
migration processes available in nTile TILtoJava:

 generating declarations and type inference for variables – the declarations of global
variables a, b and includeResult are generated inside GlobalVars.java;

 transforming dynamic constructs into static ones, by performing static analysis – see
the include expressions in interpreterTest.java.

Applying to the migration output the source lines of code software metric

[LAIR06],but not counting non-relevant source code lines (emtpy lines, commented lines,
lines containing empty braces etc.), the results from Table 1 are obtained.

Table 1. Effective source lines of code comparison

Translated Entity eLOC in PHP eLOC in Java

interpreterTest 7 24

included 2 6

included2 2 6

GlobalVars N/A 6

TOTAL 11 42

The results underlines that comparing applications based on the number of lines of

code is not a relevant metric, especially when the compared applications are written in
different programming languages. The substantially larger Java migration output has a
much improved clarity as well as maintainability than the much more compact original PHP
code. Additionally, there is a fixed overhead an average Java source file has over a PHP
source file, whose overall percentage decreases as the source file gains in complexity.

Quantitative Methods Inquires

460

3. Generality Metrics of Software Migrators

The design and implementation of a software migrator is a complex task. The
migrator should ideally cover all variations of the source language syntax and semantics,
and be able to translate them into optimal target language constructs. Nevertheless, a
partially developed migrator could successfully translate a well chosen set of applications. An
incremental approach to development is thus possible, each iteration increasing the
coverage degree of the source language.

In order to track progress and have a decisional basis for the features of each
iteration, some sort of metric must be devised. In [ENYE04] a generality metric for software
migrators is proposed, referring to the coverage degree of source language constructions
and runtime libraries.

Source language constructions are described in the language's grammar and
include program structures, data and instruction definitions. Measurement of the generality
degree for software migrators takes into consideration the following aspects:

a) The coverage degree for constructions and functionalities of the source
languageThis degree does not only refer to the number of distinct constructions and
functionalities. In the case of complex migrators, the implementation coefficient of
each source language feature must be taken into account. A situation where some
constructions are partially supported may appear during the development iterations.
Determining the implementation coefficient is done by the migrator’s development
team, taking into account for example man-days or cost for the current
implementation and the estimated effort to completion.

b) The importance coefficient of each constructionThe importance coefficient of a
language construction is also determined by the translator’s developers and is based
on the average usage frequency of the construction in a representative set of
applications.

c) The translation degree of runtime librariesUsually, apart from language
constructions a software application uses a standard program library and possibly a
set of third-party libraries. Translating an application also requires translating these
libraries. A difficulty arises when the source code for third-party libraries is not
available. Even more, for many languages not even the source code of the standard
library is available. When the source code of a library is available, the translation
degree of the library does not influence the migrator’s generality. This is because the
same migrator is used to automatically translate the library as well as the
application. When the source code of a library is not available, automated
translation cannot be accomplished. Translating the behavior of the source language
library into an equivalent behavior in the target language becomes a manual
operation. Because the standard library is used by any application written in the
source language, it is mandatory that the generality metric include the translation
degree of the standard library.
Taking these factors into consideration, the proposed generality metric formula is:

Quantitative Methods Inquires

461

where:

GTF – the software migrator generality degree,

CoImpi – the importance coefficient for each construction of the source language,

CoImpli – the implementation coefficient of each source language construction,

ConT – the total number of constructions in the source language,

CL – the importance coefficient of the language,

GTBst – the translation degree of the standard library.

The first term of the formula represents the coverage degree of the language
constructions.

The CL importance coefficient is the translation generality ratio in relation with the
translation generality of the standard library. It depends on the source language. When the
source code of the standard library is available, CL has maximum value 1 because the
translator's generality is entirely conditioned by the coverage degree of the language
constructions. This ideal situation does not often occur, because standard libraries usually
have proprietary implementations. Availability might also depend on the licensing model for
the source code of the standard library.

The development of software migrators should aim to increase the generality metric
as much as it is economically feasible, the development costs are justified. Other aspects,
such as execution speed and memory requirements of the software migrator, should also be
put in balance.

Applying the above generality metric formula to the nTile PHPtoJava software
migrator means analyzing the structure of the PHP language and assigning suitable values to
the influencing factors.

With respect to source language constructs, Table 1 contains the importance and
implementation coefficients that have been determined at a certain point in the development
cycle of the migrator.

Table 2. PHP source language constructs

Source Language Construct Importance
Coefficient

Implementation
Coefficient

Top-Level Constructs

Class 1 1

Class Field 1 1

Function and Class Method 1 1

Source File 1 1

Statements

BREAK/CONTINUE 1 0.7

Compound 1 1

Quantitative Methods Inquires

462

Source Language Construct Importance
Coefficient

Implementation
Coefficient

Display 1 1

DO-WHILE 1 1

Exception Handling 0.7 1

Expression Container 1 1

FOR 1 1

FOR-EACH 1 1

LIST 0.7 0.5

Multiple Decision (SWITCH) 1 1

RETURN 1 1

Simple Decision (IF-THEN-ELSE) 1 1

WHILE 1 1

Expressions

Array 1 1

Binary 1 1

Class Instantiation 1 1

Dynamic Function Call 0.5 0

Dynamic Include 0.9 0

Dynamic Variable Reference 0.5 0

Function Call 1 0.9

Include 1 1

Literal 1 1

Ternary Conditional 1 1

Type Cast 1 1

Type Test (INSTANCEOF) 1 1

Unary 1 1

Variable Reference 1 1

Dynamic constructs - variables, function calls and includes - are not supported yet.

Dynamic variables and function calls are not widely-used in PHP programs and therefore
have a smaller importance coefficient. Dynamic includes however should be considered a
priority in subsequent development iterations, because they are used very frequently.

Partially implemented language constructs are BREAK/CONTINUE statements (no
nesting level jumps), LIST statements (no character strings can be used as assigners) and
function call expressions (no optional arguments are supported).

The standard PHP library is divided into function groups. The implementation
coefficient of each function group is presented in Table 2.

Quantitative Methods Inquires

463

Table 3. PHP runtime implementation details

Function Group Total Implemented Implementation
Coefficient

Arrays 75 36 0.48

Date and Time 37 5 0.14

Directories 9 3 0.33

Error Handling and Logging 11 1 0.09

Filesystem 78 27 0.35

Function Handling 11 1 0.09

Mail 2 1 0.5

Mathematical 48 11 0.23

Miscellaneous 25 3 0.12

Network 32 4 0.13

Output Control 17 6 0.35

PHP Options&Information 47 10 0.21

POSIX Regex 7 4 0.57

Sockets 25 1 0.04

Strings 95 39 0.41

URLs 10 6 0.6

Variables handling 36 28 0.78

Zlib Compression 22 4 0.18

TOTAL 587 190 0.32

The more frequently used library functions have taken priority when developing the

migrator's runtime support. Also, some other implemented functions are are not taken into
account, as they belong to non-standard library extensions (MySQL, FTP, image handling).

According to these particularizations, the value of the generality metric for nTile
PHPtoJava becomes:

This value can be increased by further development of the migrator, notably by

implementing the dynamic constructs and by supporting a larger number of PHP runtime
library functions. The current functionality is sufficient however for translating numerous
real-life PHP projects.

4. Economical Feasibility

The need to migrate a software application to a new programming language
appears in several cases. One of these cases is that the code base of the application has
outgrown the possibilities of the source language and its tools, maintenance and
development of new features becoming problematic. Another scenario is that vendor support
is no longer satisfying or that the specialists for the source language have become/are about

Quantitative Methods Inquires

464

to become scarce. Usually all these aspects are interlinked and tend to occur simultaneously,
due to the inherent life-cycle of programming languages.

Figure 2 illustrates vendor support and specialists' availability over time for a typical
programming language.

Time

Support

Early Stage Mainstream Stage Marginalization Stage

Figure 2. Programming language life-cycle

Once the need to migrate has been established, a matter to be thoroughly

considered is that of the target language. The most suitable type of language is usually a
general-purpose one, with high expressivity, well-supported by vendors. The available tools
should be sophisticated enough to allow efficient control over the code base. Finally, the
specialists with a suitable skill degree should be readily available.

The straightforward way of migrating a software application is to perform a
complete manual rewrite. This approach presents several advantages:

 possibility of application redesign, having a better understanding of the business
domain;

 optimal use of the technologies available for the target language;
There are however disadvantages as well:

 significant effort, as this involves a complete development life-cycle for what is in
essence a new application: financial costs, long period of time, significant allocation
of human resources;

 the inherent bugs that are produced by any software development process, even if
most bugs in the original application had been detected and resolved throughout the
application's usage over time;

 stakeholders will probably make pressures to add new features while rewriting the
application; this multiplies the risks of defects;

 new features, or even existing features that are altered by the rewrite, might change
the user experience and cause learning difficulties; users are normally capable of
dealing with few changes at a time, but not with many/radical ones – affecting their
productivity and incurring training costs.

Quantitative Methods Inquires

465

Automated translation using a software migrator is by default limiting the scope of
the change to porting existing functionality without adding new features. This can be done at
a later stage, benefiting from all the advantages of the target language: refactoring support,
more powerful technologies and tools.

Among the advantages of automated software translation are:
 lower effort, as the analysis, design and implementation processes are not executed;

only testing and deployment need to be performed;
 as the existing functionality is closely reproduced, no application-specific bugs are

introduced into the software;
 the usability closely matches that of the original application; even if the user

interface changes (e.g. transform a text-based interface into a GUI), there is a close
correspondence between each interface element of the old and new application;

 the back-end of the application can be re-engineered using optimization algorithms
during the migration process; being automated rather than applied manually, the
result is uniform and less prone to bugs;

 by-products of the migration process include detailed information about the structure
and flows of the application, information that can be used by implementing analysis
tools.
Inherent disadvantages of automated software migration are:

 not taking full advantage of the technologies available for the target language, since
a generic automated process cannot capture project-specific optimization nuances as
well as the human mind; refactoring can be efficiently performed a later stage
though;

 all bugs that are still undetected in the original application will be ported into the
new one (these are probably few in number and unimportant since the original
application had been in use for a significant period of time);

 new bugs could be introduced into the new application, due to bugs in the software
migrator itself; this risk can be minimized by thorough testing of the migrator and by
test harnesses/pilot migration projects to check the translation of individual
constructs.
These disadvantages can be countered by implementing software migrators that

are customizable for specific translation projects. Individual particularities of each application
can be better addressed this way.

These general considerations about the economical feasibility of software migration
are particularized as follows in the case of nTile PHPtoJava.

PHP is suitable for the development of small-to-medium Web sites. Once the code
base reaches a certain size, maintenance becomes difficult due to the characteristics of the
language: procedural (up to version 4), weakly and dynamically typed, interpreted.
Specialists are readily available, but they tend to be entry-level. Due to the permissive and
sometimes inconsistent nature of the language, it is difficult to develop advanced tools for it,
therefore these tools are not in widespread use.

Java is a widely used, well-supported and expressive language. Tools for Java and
for the Java EE platform are in large supply. The number and quality of specialists is fully
satisfactory.

The advantages of migrating from PHP to Java arise from the nature of the target
language:

Quantitative Methods Inquires

466

 better error detection and traceability, both at compile-time and at runtime;
 better maintenance, performance and scalability;
 easy access to many modern technologies, based on Java EE but not only;
 good tools, including the ones for refactoring.

Some of the qualitative improvements offered by the automated translation process
in nTile PHPtoJava refer to extraction of objects and components (based on dynamic
includes) and to detection of ambiguities (erroneous function returns, duplicated formal
function parameters, class constructors used as regular functions etc.).

The migration process of nTile PHPtoJava produces detailed information about the
structure of the translated application. This information could be used to implement various
by-products, such as:

 visualization of control and data flows, source file dependencies;
 quality metrics and detection of problematic constructs;
 intelligent PHP source code editors (e.g. auto-completion, navigation to

declaration/usage, syntax highlight, type hinting);
 refactoring features.

The detail level of the intermediate representation for the PHP source code can
provide the basis for implementing all these analysis algorithms.

Finally, feasibility considerations apply to the development of software migrators
themselves. Economical constraints must be balanced with quality needs, more stringently so
because a migrator is a product and not a project. It thus needs to have a superior quality
and to be designed for high maintainability, extensibility and reuse.

In practice, a software migrator will not offer a 100% coverage for the source
language and its libraries. Each development iteration should prioritize the most commonly
used constructions, whose implementation effort does not surpass a reasonable limit. The
translator won't usually cover the constructions that are rarely used and/or require extensive
effort to be translated – these shall be translated manually.

If a certain software application contains specific patterns, these can be translated
in a special manner by elaborating heuristic algorithms that are custom-tailored to the
respective situation. The disadvantages of automated translation using an off-the-shelf
software migrator are thus minimized.

5. Conclusions

The natural evolution of programming languages induces the need to migrate
legacy application systems towards modern languages and platforms. Economical factors
play a role just as important as technical factors in the migration's decision-making process.

A viable alternative to manual migration is using a specialized tool called a
software migrator. Software migrators have a life-cycle that is also determined by
economical and technical factors. Their quality is extremely important and needs to be
measured and continuously improved. Generality is one of the key metrics of software
migrators.

The case-study presented in this paper, nTile PHPtoJava, was designed and
developed with all these considerations in mind.

Quantitative Methods Inquires

467

Bibliography

1. Enyedi, R. Metricile generalitatii translatoarelor software, “Informatica Economica” Journal,

no. 34, 2004, pp. 65-68
2. Enyedi, R. Tehnici si metode de translatare a aplicatiilor informatice, Doctoral Thesis, ASE

Bucharest, 2006
3. Ivan, I., and Popescu, M. Metrici Software, INFOREC Publishing House, Bucharest, 1999
4. Kassem, N. Designing Enterprise Applications with the Java 2 Platform, Enterprise Edition,

Addison-Wesley, 2000
5. Kinnersley, B. The Language List, http://people.ku.edu/~nkinners/LangList/Extras/langlist.htm
6. Laird, L. M. Software Measurement and Estimation: A Practical Approach, Wiley-IEEE

Computer Society, 2006
7. Reed, J. What SAP says about ABAP's future, http://searchsap.techtarget.com/columnItem/

0,294698,sid21_gci1282035,00.html
8. Sebesta, R. Concepts of Programming Languages (8th Edition), Addison Wesley, 2007
9. Watt, D. A. Programming Language Processors: Compilers and Interpreters, Prentice Hall

International, 1993
10. * * * Numiton nTile PHPtoJava, http://www.numiton.com
11. * * * PHP Manual, http://www.php.net/manual/en/
12. * * * The History of Programming Languages, O'Reilly, 2007, http://www.oreilly.com/

pub/a/oreilly/ news/languageposter_0504.html

1 Robert Enyedi graduated the Faculty of Cybernetics, Statistics and Economic Informatics from the Bucharest
University of Economics. His doctoral thesis was on the subject of software translation. He has several years of
professional experience in this field. He is the co-founder and CEO of Numiton Ltd., a start-up company specialized
in developing software migrators.

2 Codification of references:

[ENYE04] Enyedi, R. Metricile generalitatii translatoarelor software, “Informatica Economica” Journal,
no. 34, 2004, pp. 65-68

[ENYE06] Enyedi, R. Tehnici si metode de translatare a aplicatiilor informatice, Doctoral Thesis, ASE
Bucharest, 2006

[IVAN99] Ivan, I., and Popescu, M. Metrici Software, INFOREC Publishing House, Bucharest, 1999

[Kass00] Kassem, N. Designing Enterprise Applications with the Java 2 Platform, Enterprise Edition,
Addison-Wesley, 2000

[KINN07] Kinnersley, B. The Language List, http://people.ku.edu/~nkinners/LangList/Extras/langlist.htm

[LAIR06] Laird, L. M. Software Measurement and Estimation: A Practical Approach, Wiley-IEEE
Computer Society, 2006

[NUMI07] * * * Numiton nTile PHPtoJava, http://www.numiton.com

[OREI07] * * * The History of Programming Languages, O'Reilly, 2007,
http://www.oreilly.com/pub/a/oreilly/ news/languageposter_0504.html

[PHPM07] * * * PHP Manual, http://www.php.net/manual/en/

[REED07] Reed, J. What SAP says about ABAP's future, http://searchsap.techtarget.com/columnItem/
0,294698,sid21_gci1282035,00.html

[SEBE07] Sebesta, R. Concepts of Programming Languages (8th Edition), Addison Wesley, 2007

[Watt93] Watt, D. A. Programming Language Processors: Compilers and Interpreters, Prentice Hall
International, 1993

