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Abstract: In this paper, we deal with concept of “metric”. At first, we briefly discuss some 
issues regarding this very shaded notion in human knowledge. Secondly, we emphasize its 
usefulness in Mathematics, particularly in the relatively recent field of fuzzy models. 
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1. Introduction 
 
“Metric” is one of the words with great spreading and equally many senses, 

depending on the scope we think about. For instance, in computer networking, it 
characterizes a way (or a route), while in general relativity theory it describes the spacetime 
complex, in software it’s one important tool for pointing out certain characteristics. In 
connection with this last assertion, an interesting investigation regarding text entities and 
adjacent evaluation algorithms (among the text characteristics, “orthogonality” has received 
great attention) are presented in [9]1. However, in this paper, we focus our attention on 
some categories of metrics and their utility in the field of mathematics. In fact, it’s the 
domain in which this concept proves its true value. It is sufficient to enumerate geometry, 
algebraic theory and fuzzy systems. 
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2. Metric spaces 
 

Definition 2.1. [11] 
Consider a set φ≠X . 

A function RXX:d →×  is called metric or distance if: 

i) ( ) ( ) Xy,x,x,ydy,xd ∈∀= ; 

ii) ( ) Xy,x,y,xd ∈∀≥ 0  and 

    ( ) yxy,xd =⇔= 0 ; 

iii) ( ) ( ) ( ) Xz,y,x,y,zdz,xdy,xd ∈∀+≤ . 

Thus the ordered pair ( )d,X  is a metric space. 

 
Definition 2.2. [7] 

A group is an algebraic structure ( ) φ≠G,,G D , which fulfill the conditions: 

i) closure: Gb,a,Gba ∈∀∈D ; 

ii) “ D ” is associative: ( ) ( ) Gcbacbacba ∈∀= ,,,DDDD ; 

iii) identity element: Ge∈∃  such that Ga,aaeea ∈∀== DD ; 

iv) inverse element: G'a,Ga ∈∃∈∀  such that ea'a'aa == DD . 

If the commutative rule ( Ab,a,abba ∈∀= DD ) is also satisfied, then ( )D,G  is called 

abelian (or commutative) group. 
 
Definition 2.3. [7] 

We define a field as a set φ≠K  with two binary algebraic (symbolically writed as 

addition and multiplication) operations 

( ) bab,a;KKK: +→×+ 6  

( ) bab,a;KKK: ⋅→×⋅ 6  

which satisfies the following requirements: 

i) ( )+,K  is abelian group with identity element called zero: ( ) 0=+e ; 

ii) ( )⋅,K  is group with identity element called unity: ( ) 1=⋅e ; 

iii) 01≠ . 

If ( )⋅,K  is commutative group, then ( )⋅+,,K  is a commutative field. 

 
Definition 2.4. [1] 

Let φ≠X  and ( )⋅+,,K  commutative field. 

We define the following arithmetical operations: 

1) ( ) yxy,x;XXX: ⊕→×⊕ 6  (the sum of two vectors); 

2) ( ) xax,a;XXK: ⊗→×⊗ 6  (scalar multiplication). 

We say that ( )K,X  is a vectorial space if and only if: 

i) ( )⊕,K  is a commutative group. 

ii) ( ) ( ) ( ) Xx,Kb,a,xbxaxba ∈∀∈∀⊗⊕⊗=⊗+ ; 
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iii) ( ) ( ) ( ) Xy,x,Ka,yaxayxa ∈∀∈∀⊗⊕⊗=⊕⊗ ; 

iv) ( ) ( ) Xx,Kb,a,xabxba ∈∀∈∀⊗=⊗⊗ ; 

v) KkkkkKkXxxx ∈∀==∈∈∀=⊗ ,11 and  where,,1 . 

 
Example 2.1. [1] 

A classical example of vectorial space is ( )R,Rn  where: 

i) ( ){ }n,jxx,...,xxR jn
n 1 allfor  numbers real are 1 ===  

ii) If nRy,x,Ra ∈∈   then 

( )nn yx,...,yxyx ++=+ 11  

and 

( )nax,...,axax 1= . 

 
Definition 2.5. [11] 

Consider ( )K,X  a vectorial space with dimension equal to n  and 

( ) ( )CKRK =∨= . 

A function KX: →⋅  is called norm if the following relations hold: 

i) Xx,x ∈∀≥ 0  and Xxx 00 =⇔= ; 

ii) Xx,Ka,xaax ∈∀∈∀⋅= ; 

iii) Xy,x,yxyx ∈∀+≤+ . 

 
Example 2.2. [11] 

For instance, if nRy,x ∈  it results that 

22
1 nx...xx ++=  

 and 

( ) ( ) ( )22
11 nn yx...yxy,xd −++−= . 

 

3. Metrics on fuzzy spaces 
 
Definition 3.1. [8] 

A fuzzy subset of a given set X  is described by a function ( )xu  (membership 

degree of x  in X ) with [ ]10,X:u → . The set ( ) [ ]{ }10,X:uuxF →=  contain all fuzzy 

subset previously defined. 
 
Definition 3.2. [8] 

The set level−α  of ( )xu  is defined as 

( ) ( ){ }α≥∈=α xuXxuL . 
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Definition 3.3. [8] 

If Y,X are two subsets of nR , the Hausdorff metric between YX  and  is given by 

the formula: 

( ) =
⎭
⎬
⎫

⎩
⎨
⎧

−−=
∈∈∈∈

yx,yxY,Xd
XxYyYyXx

infsupinfsupmax  

( ) ( )
⎭
⎬
⎫

⎩
⎨
⎧

=
∈∈

X,yd,Y,xd
YyXx

supsupmax . 

Remark that Hausdorff metric satisfies the requirements given in Definition 2.1, 
namely symmetry, nonnegativity and triangle inequality. Moreover it is important to be 

mentioned that the space of subsets of nR  with this distance is a complete space. 
It is necessary to remark that this metric plays an important role in some calculation 

on fuzzy random variable (at short, FRV). 
 
Definition 3.4. [8] 

It’s possible to define a metric on ( )nRF  as follows: 

( )
[ ]

( ) ( )( )21
10

21 sup uL,uLdu,ud
,

αα
∈α

∞ = . 

One can prove that ( )( )∞d,RF n  is a complete space. 

Another way to define a such type of metric is: 

( ) ( ) ( )( )
p

p
p duL,uLdu,ud

1
1

0
2121 ⎟

⎟

⎠

⎞

⎜
⎜

⎝

⎛
α= ∫ αα . 

 
Remark 3.1. 

An interesting development of a distance between two fuzzy numbers is presented 

in [5]. First, a fuzzy number x  is described as a pair ( ) ( )( )rx,rx  of two special functions 

defined on closed interval [ ]10, . Next, the distance between yx  and  is measured through a 

metric (which admit the quality of complectness on the respective fuzzy space) given by: 

( ) ( ) ( )( ) ( ) ( )( ) 2
1

1

0

1

0

22
⎟
⎟

⎠

⎞

⎜
⎜

⎝

⎛
−+−= ∫ ∫ drryrxdrryrxy,xd . 

This metric was useful in the process of managing a regression model with fuzzy 
data and real parameters. 
 
Remark 3.2. 

A special type of fuzzy numbers is LR (left-right); in such a case, we have [5]: 

( )
⎪
⎪
⎩

⎪⎪
⎨

⎧

>≥⎟
⎠
⎞

⎜
⎝
⎛ −

>≤⎟
⎠
⎞

⎜
⎝
⎛ −

=
0,  ,

0,  ,

bmt
b
mtR

amt
a
tmL

tu  
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where RL,  are nonincreasing and nonnegative functions with ( ) ( ) 100 == RL . The 

triangular form is a particular case of LR form, with many applications in fuzzy statistics. 
In [6] two LR f-numbers are compared by Hukuhara difference as in the following 

lines. 

Consider LRFy,x ∈ , ( )LRxxx r,l,ux = , ( )
LRyyy r,l,uy = , (where rl  and  mean the 

left spread and the right spread, respectively). Under assumption that yx ll ≥  and yx rr ≥ , it 

is possible to define the Hukuhara difference between these two numbers as it follows: 

=Θ yx H ( )
LRyxyxyx rr,ll,uu −−− . 

The Hukuhara difference appears in some theoretical results regarding covariance 
between two fuzzy random variables [6]. 
 
Remark 3.3. 

As regression models, fuzzy clustering is one field in which a proper choice of a 
metric is very important, too. A classical model is fuzzy c-means [3]. Generally, it is based on 
searching the minimum of the following function: 

( ) ∑∑
= =

−=
c

i

N

k
ik

m
ik vxuVUJ

1 1

2, , 

where iv  represents the “center” for the i’th cluster, kx  the k’th data, iku  the membership 

degree of kx  in the i’th group of data, and m  is a fuzzification exponent. In dedicated 

literature, many improvements of this method were published and among them are eFFCM 
and geFFCM, suitable for managing a large number of data [3]. 
 

4. Conclusions 
 

At the end, beyond all doubt we can say that the “metric” is one essential tool in all 
kinds of (roughly speaking) measurements. It is useful for point out “distances” between 
somehow abstract things such as mathematical objects and is a vital question in the process 
of building theoretical pattern which reproduce with more rigour the complex phenomena of 
nature.  
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