

MODELLING UNEMPLOYMENT RATE USING BOX-JENKINS PROCEDURE

Ion DOBRE

PhD, University Professor, Department of Economic Cybernetics University of Economics, Bucharest, Romania

E-mail: dobrerio@ase.ro

Adriana AnaMaria ALEXANDRU

PhD Candidate, University Assistant, Department of Statistics and Econometrics University of Economics, Bucharest, Romania

E-mail: adrianaalexandru@yahoo.com

Abstract: This paper aims to modelling the evolution of unemployment rate using the Box-Jenkins methodology during the period 1998-2007 monthly data. The empirical study relieves that the most adequate model for the unemployment rate is ARIMA (2,1,2). Using the model, we forecasts the values of unemployment rate for January and February 2008. Therefore, the unemployment rate for January 2008 is 4.06%.

Key words: Unemployment rate; Box-Jenkins methodology; ARIMA models; Romania

1. Theoretical Background

The pioneers in this area was Box and Jenkins who popularized an approach that combines the moving average and the autoregressive models in the book¹. Although both autoregressive and moving average approaches were already known (and were originally investigated by Yule), the contribution of Box and Jenkins was in developing a systematic methodology for identifying and estimating models that could incorporate both approaches. This makes Box-Jenkins models a powerful class of models.

The Box-Jenkins ARMA model is a combination of the AR and MA models as follows:

$$y_{t} = a_{0} + a_{1}y_{t-1} + a_{2}y_{t-2} + \dots + a_{p}y_{t-p} - b_{1}u_{t-1} - b_{2}u_{t-2} - \dots - b_{q}u_{t-q} + u_{t-1}u_{t-1} - b_{2}u_{t-2} - \dots - b_{q}u_{t-q} + u_{t-1}u_{t-1}u_{t-1} - b_{2}u_{t-2} - \dots - b_{q}u_{t-q} + u_{t-1}$$

Figure1. Box-Jenkins procedure

There are three primary stages in building a Box-Jenkins time series model:

- 1. Model Identification
- 2. Model Estimation
- 3. Model Validation

1.1. Box-Jenkins Model Identification

The identification stage is the most important and also the most difficult: it consists to determine the adequate model from ARIMA family models. The most general Box-Jenkins model includes difference operators, autoregressive terms, moving average terms, seasonal difference operators, seasonal autoregressive terms, and seasonal moving average terms². This phase is founded on the study of autocorrelation and partial autocorrelation.

The first step in developing a Box-Jenkins model is to determine if the series is stationary and if there is any significant seasonality that needs to be modelled.

Stationarity in Box-Jenkins Models

The Box-Jenkins model assumes that the time series is stationary. A stationary series

has:

- 1. Constant mean
- 2. Constant variance
- 3. Constant autocorrelation structure

Regression with nonstationary variables is a spurious correlation. The random walk

 $y_t = y_{t-1} + u_t \ u_t \sim N \ (0, \sigma^2)$ is not stationary, since its variance increases linearly with time t. Stationarity can be assessed from a run sequence plot. The run sequence plot should show constant location and scale. It can also be detected from an autocorrelation plot. Specifically, non-stationarity is often indicated by an autocorrelation plot with very slow decay.

Box and Jenkins recommend differencing non-stationary series one or more times to achieve stationarity. Doing so produces an ARIMA model, with the "I" standing for

No. 2 Summer

"Integrated". But its first difference $\Delta y_t = y_t - y_{t-1} = u_t$ is stationary, so y is "integrated of order 1", or y ~ I (1).

Testing for non-stationarity

1. Autocorrelation function (Box-Jenkins approach)-if autocorrelations start high and decline slowly, then series is nonstationary, and should be differenced.

2. Dickey-Fuller test

 $y_t = a + by_{t-1} + u_t$ would be a nonstationary random walk if b = 1. So to find out

if y has a "unit root" we regress: $\Delta y_t = a + cy_{t-1} + u_t$ where c = b-1 and test hypothesis that c = 0 against c < 0 (like a "t-test").

Seasonality in Box-Jenkins Models

Box-Jenkins models can be extended to include *seasonal* autoregressive and seasonal moving average terms.

Model identification: seasonality of order s is revealed by "spikes" at s, 2s, 3s, lags of the autocorrelation function.

Model estimation: to make series stationary, may need to take s-th differences of the raw data before estimation. These seasonal effects may themselves follow AR and MA processes.

At the model identification stage, our goal is to detect seasonality, if it exists, and to identify the order for the seasonal autoregressive and seasonal moving average terms. For Box-Jenkins models, it isn't necessary remove seasonality before fitting the model. Instead, it can include the order of the seasonal terms in the model specification to the ARIMA estimation software.

Once stationarity and seasonality have been addressed, the next step is to identify the order (the p and q) of the autoregressive and moving average terms. The primary tools for doing this are the autocorrelation plot and the partial autocorrelation plot. The sample autocorrelation plot and the sample partial autocorrelation plot are compared to the theoretical behaviour of these plots when the order is known.

Order of Autoregressive Process (p)

Specifically, for an AR (1) process, the sample autocorrelation function should have an exponentially decreasing appearance. However, higher-order AR processes are often a mixture of exponentially decreasing and damped sinusoidal components. For higher-order autoregressive processes, the sample autocorrelation needs to be supplemented with a partial autocorrelation plot. The partial autocorrelation of an AR (**p**) process becomes zero at lag **p+1** and greater, so we examine the sample partial autocorrelation function to see if there is evidence of a departure from zero. This is usually determined by placing a 95% confidence interval on the sample partial autocorrelation plot (most software programs that generate sample autocorrelation plots will also plot this confidence interval). If the software program does not generate the confidence band, it is approximately $\pm 2/\sqrt{N}$, with N denoting the sample size.

The data is AR (p) if: ACF will decline steadily, or follow a damped cycle and PACF will cut off suddenly after p lags.

Vol. 3 No. 2 Summer

Order of Moving Average Process (q)

The autocorrelation function of a MA (q) process becomes zero at lag q+1 and greater, so we examine the sample autocorrelation function to see where it essentially becomes zero.

The following table summarizes how we use the sample autocorrelation function for model identification.

Table	1. The	e type	of the	model
-------	--------	--------	--------	-------

Shape	Indicated Model				
Exponential, decaying to zero	Autoregressive model. Use the partial autocorrelation plot to				
	identify the order of the autoregressive model.				
Alternating positive and negative, decaying to zero One or more spikes, rest are essentially zero Decay, starting after a few lags All zero or close to zero	Autoregressive model. Use the partial autocorrelation plot to help identify the order. Moving average model, order identified by where plot becomes zero. Mixed autoregressive and moving average model. Data is essentially random.				
High values at fixed intervals	Include seasonal autoregressive term.				
No decay to zero	Series is not stationary.				

The data is MA (q) if: ACF will cut off suddenly after q lags and PACF will decline steadily, or follow a damped cycle.

It's not indicated to build models with:

- Large numbers of MA terms
- Large numbers of AR and MA terms together

You may well see very (suspiciously) high t-statistics. This happens because of high correlation ("colinearity") among regressors, not because the model is good.

1.2. Box-Jenkins Model Estimation

The main approaches to fitting Box-Jenkins models are non-linear least squares and maximum likelihood estimation. Maximum likelihood estimation is generally the preferred technique³.

1.3. Box-Jenkins Model Diagnostics

Model diagnostics for Box-Jenkins models is similar to model validation for nonlinear least squares fitting. Model diagnostics for Box-Jenkins models is similar to model validation for non-linear least squares fitting.

That is, the error term u_t is assumed to follow the assumptions for a stationary unvaried process. The residuals should be white noise (or independent when their distributions are normal) drawings from a fixed distribution with a constant mean and variance.

If the Box-Jenkins model is a good model for the data, the residuals should satisfy these assumptions. If these assumptions are not satisfied, we need to fit a more appropriate model. That is, we go back to the model identification step and try to develop a better

M O M C

model. Hopefully the analysis of the residuals can provide some clues as to a more appropriate model. The residual analysis is based on:

1. Random residuals: the Box-Pierce Q-statistic: $Q(s) = n \sum r(k)^2 \approx \chi^2(s)$ where r (k) is the k-th residual autocorrelation and summation is over first s autocorrelations.

2. Fit versus parsimony: the Schwartz Bayesian Criterion (SBC):

 $SBC = \ln \{RSS/n\} + (p+d+q) \ln (n)/n$, where RSS = residual sum of squares, n is sample size, and <math>(p+d+q) the number of parameters.

2. The data

The variable used in the analysis is the unemployment rate that ran from 1998 to the end of 2007 and its available monthly. The source of data is the Monthly Bulletins of National Bank of Romania.

Figure 2. The unemployment rpate evolution during the period 1998-2007 Source: Montly Bulletins of National Bank of Romania

The data presents some seasonal fluctuations and that is the reason for with data has been seasonally adjusted, using the moving average method implemented in Eviews program.

Figure 3. The unemployment rate and the unemployment rate seasonally adjusted

The first step in developing a Box-Jenkins model is to determine if the series is stationary. For this, we use the autocorrelation function (ACF) and Augmented Dickey-Fuller test (ADF).

Because the autocorrelation (ACF) start high and decline slowly, then series is nonstationary, and should be differenced. We have analyzed the data series stationarity by using the Augmented Dickey-Fuller (ADF) test, who reveals the fact that the zero hypotheses is accepted, the series has a root unit and it is non stationary. It becomes stationary by first order differences.

Vol. 3 No. 2 Summer 2008

Quantitative	Methods	Inquires
--------------	---------	----------

Date: 03/18/08 Time: 00:29 Sample: 1998M01 2007M12 Included observations: 120							
Autocorrelation	Partial Correlation		AC	PAC	Q-Stat	Prob	
Figure 4. Th		1 2 3 4 5 6 7 8 9 10 11 12 13 14 15 6 7 18 19 20 21 22 23 24 25 26 27 28 29 30 31	0.977 0.949 0.854 0.884 0.853 0.822 0.792 0.764 0.778 0.6738 0.771 0.684 0.626 0.608 0.645 0.626 0.608 0.588 0.567 0.545 0.523 0.522 0.545 0.523 0.522 0.350 0.314 0.233 0.2247 0.247 of u	0.977 -0.152 -0.097 0.052 -0.020 -0.037 -0.014 -0.013 -0.017 -0.017 -0.015 -0.041 -0.014 -0.042 -0.018 -0.042 -0.018 -0.018 -0.018 -0.018 -0.018 -0.018 -0.020 -0.035 -0.037 -0.020 -0.037 -0.020 -0.037 -0.020 -0.037 -0.020 -0.037 -0.020 -0.037 -0.020 -0.035 -0.020 -0.037 -0.020 -0.035 -0.020 -0.037 -0.020 -0.037 -0.020 -0.035 -0.020 -0.037 -0.020 -0.037 -0.020 -0.037 -0.020 -0.037 -0.020 -0.037 -0.020 -0.037 -0.020 -0.037 -0.020 -0.037 -0.020 -0.037 -0.020 -0.037 -0.020 -0.037 -0.020 -0.037 -0.020 -0.037 -0.020 -0.037 -0.020 -0.037 -0.020 -0.037 -0.020 -0.037 -0.027 -0.027 -0.027 -0.027 -0.037 -0.027 -0.0	117.54 229.20 334.06 432.73 525.38 612.07 693.43 769.71 841.45 908.77 972.07 1031.88 1088.7 1142.9 1194.4 1243.1 1288.8 1331.5 1371.2 1408.0 1442.0 1472.7 1500.1 1524.7 1546.9 1566.8 1584.6 1600.3 1614.1 1626.1 1636.1	0.000 0.0000 0.0000 0.0000 0.0000 0.00000 0.0000 0.000000	
ro	to conconall		dina	hote			

Null Hypothesis: RSSA98 has a unit root Exogenous: Constant, Linear Trend Lag Length: O (Fixed)

		t-Statistic	Prob.*
Augmented Dickey-F Test critical values:	uller test statistic 1% level 5% level 10% level	-3.037670 -4.036983 -3.448021 -3.149135	0.1266

*MacKinnon (1996) one-sided p-values.

Augmented Dickey-Fuller Test Equation Dependent Variable: D(RSSA98) Method: Least Squares Date: 03/26/08 Time: 16:07 Sample (adjusted): 1998M02 2007M12 Included observations: 119 after adjustments

Variable	Coefficient	Std. Error	t-Statistic	Prob.
RSSA98(-1) C @TREND(1998M01)	-0.085244 1.056913 -0.006726	0.028062 0.336113 0.001941	-3.037670 3.144520 -3.464857	0.0029 0.0021 0.0007
R-squared Adjusted R-squared S.E. of regression Sum squared resid Log likelihood Durbin-Watson stat	0.093806 0.078182 0.340572 13.45477 -39.15619 1.312423	Mean deper S.D. depend Akaike info Schwarz cri F-statistic Prob(F-stati	ndent var dent var criterion terion stic)	-0.037015 0.354721 0.708507 0.778569 6.003934 0.003302

Fie rate seasonally adjusted

It Figure 5. The Augmented Dickey-Fuller test results

Stage 2: The identification - the autocorrelation is computed on the first differences series

Sample: 1998M01 2007M12 Included observations: 119

Figure 6. The Correlogram of first differences of unemployment rate

No. 2 Summer

By applying the ADF test for the series of the first order differences one can observe that the series becomes stationary, so the initial series of the monthly unemployment rate is integrated by first order.

As a result, we have applied the Box- Jenkins procedure on the stationary data series and we want to identify the corresponding ARIMA (p, q) process. The series corelogram has allowed us to choose appropriate p and q for the data series. We have estimated more models in order to determine the right specification, by choosing from both the different models estimated on the informational criteria Akaike and by generating predictions on the basis of estimated models. The series corelogram suggests the necessity of introduction in the process estimation of both the analyzed variable lags and the lags of the error. We have started with an AR (1) process and further analyzed the residual corelogram in order to catch the correlations and autocorrelations from lags bigger that 1. From Akaike criteria's point of view, the proper model to best adjust the data is ARIMA (2, 1,2).

Stage 3: The Estimation

Dependent Variable: D(RSSA98) Method: Least Squares Date: 03/27/08 Time: 15:16 Sample (adjusted): 1998M04 2007M12 Included observations: 117 after adjustments Convergence achieved after 21 iterations Backcast: 1998M02 1998M03

Variable	Coefficient	Std. Error	t-Statistic	Prob.
AR(1)	-0.443316	0.077808	-5.697588	0.0000
AR(2)	-0.515496	0.072797	-7.081316	0.0000
MA(1)	0.813233	0.009985	81.44546	0.0000
MA(2)	0.977082	0.013197	74.03841	0.0000
R-squared	0.281409	Mean dependent var		-0.039311
Adjusted R-squared	0.262331	S.D. dependent var		0.357265
S.E. of regression	0.306846	Akaike info criterion		0.508651
Sum squared resid	10.63948	Schwarz criterion		0.603084
Log likelihood	-25.75609	Durbin-Watson stat		1.848075
Inverted AR Roots Inverted MA Roots	22+.68i 41+.90i	2268i 4190i		

Figure 7. The ARIMA model estimation

Stage 4: The Model's Adaptation

The coefficients of the model are significantly different of 0 (the t-test). The others statistics (DW, F-stat) let portend a good fitting. The determination coefficient R-squared is 28.14%.

The residual analysis is based on two criterions:

• The normality test point out that the average of residuals is approximately 0.

• The residual is a white noise, analysing the autocorrelation. Any term isn't exterior to the confidence intervals and the Q-statistic has a critical probability near to 1. The residue it may be assimilate to a white noise process.

Date: 03/27/08 Time: 15:52 Sample: 1998M04 2007M12 Included observations: 117 Q-statistic probabilities adjusted for 4 ARMA term(s)

Figure 8.	The	Correlogram	of	Residuals	Squared
-----------	-----	-------------	----	-----------	---------

Vol. 3 No. 2 Summer

Therefore, the estimation of ARIMA (2,1,2) model is validated, the time series can be described by an ARIMA(2,1,2) process. The unemployment rate seasonally adjusted times series and in first differences (DRSSA) is described by the process:

 $DRSSA = -0.4433 \cdot RSSA_{t-1} - 0.5154 \cdot RSSA_{t-2} + 0.8132 \cdot u_{t-1} + 0.9777 \cdot u_{t-2}$

Stage 5: The forecasting

The forecasting is computed by reaggregation of different components. The residual values for the months of December and November are: $u_{2007:12} = -0.21465$,

 $u_{2007:11} = -0.15538$.

The fitting values of ARIMA model for unemployment rate are:

 $RSS\hat{A}_{2007:12} = -0.06526, RSS\hat{A}_{2007:11} = 0.15115.$

	u_t	DRSSA	RSSA	Seasonal Coefficients	Unemployment rate(%)
November 2007	-0,21465				
December 2007	-0,15538		4,08929		
January 2008		-0,37544	3,71384	1.0948	4,06
February 2008		-0,0098	4,15817	1.1226	4,15
March 2008		0,197846	4,10594	1.1048	4,35

Table 2. The unemployment rate forecasts

Using an ARIMA (2,1,2) model of monthly values series of unemployment rate we can predict the value of unemployment rate for January and February 2008. In January 2008 the unemployment rate forecasted by the model was 4, 06% and for February 4,15%. The result troves sustainability into the monthly bulletin of National Institute of Statistics. According to this publication the unemployment rate is 4.3% for January 2008.

Bibliography

- 1. Bourbonnais, R. Econométrie, 6nd. ed., Dunod, Paris, 2005
- Box, G. E. P. and Jenkins, G. M. Time Series Analysis, Forecasting and Control, Holden Day, San Francisco, 1970
- Box, G. E. P., Jenkins, G. M. and Reinsel, G. C.Time Series Analysis, Forecasting and Control, 3rd ed., Prentice Hall, Englewood Clifs, 1994
- Brockwell, P.J. and Davis, R. A. Introduction to Time Series and Forecasting, 2nd. ed., Springer Verlag, 2002
- 5. Chatfield, C. The Analysis of Time Series, 5th ed., Chapman & Hall, New York, NY, 1996
- 6. Cuthbertson, K. and Hall, S. Applied Econometrics Techniques, Whreatons Ltd., 1995
- Dobre, I. and Alexandru, A. Scenarios regarding the unemployment rate evolution evolution in Romania during the period 2006-2009, Economic Computation and Economic Cybernetics Studies and Research, vol. 41, No. 2, 2007, pp. 39-52
- 8. Enders, W. Applied Econometric Time Series, Wiley, New York, 2004
- 9. Gujarati, D. Basic Econometrics, McGraw-Hill Inc., N. Y., 1995
- 10. Hamilton, J. Time Series Analysis, Princeton University Press, Princeton, 1994
- 11. Johnston, J. Econometric Methods, McGraw-Hill, N. Y., 1991
- 12. Maddala, G. S. Introduction to Econometrics, McMillan Public., 1988
- 13. Pecican, E., S. Econometrie, Ed. All, Bucharest, 1994
- 14. Pecican, E. S. and Tanasoiu, O. Modele Econometrice, Ed. ASE, Bucharest, 2001
- 15. Pecican, E. S. Econometrie, Ed. C.H. Beck, Bucharest, 2006
- Pecican, E. S. Econometria pentru...economisti: Econometrie-teorie si aplicatii, Ed. Economica, Bucharest, 2005
- 17. www.bnr.ro, National Bank of Romania, Monthly Bulletins

Chatfield, C.The Analysis of Time Series, 5th ed., Chapman & Hall, New York, NY, 1996

Brockwell, P. J. and Davis, R. A.Introduction to Time Series and Forecasting, 2nd. ed., Springer-Verlag, 2002

³ Bourbonnais, R. Econométrie, 6e éd, Dunod, Paris, 2005

¹ Box, G. E. P., Jenkins, G. M. and Reinsel, G. C.**Time Series Analysis, Forecasting and Control,** 3rd ed., Prentice Hall, Englewood Cliffs, 1994

² Box, G. E. P., Jenkins, G. M. and Reinsel, G. C. **Time Series Analysis, Forecasting and Control,** 3rd ed. Prentice Hall, Englewood Cliffs, 1994