
  
Quantitative Methods in Enterprises  

Behavior Analysis under Risk an Uncertainty 
 

 
54 

 
 
 

A MODEL FOR COORDINATING NEGOTIATIONS  
AMONG VIRTUAL ENTERPRISES 

 
 
 

Adina CRETAN1 
PhD Candidate, Economic Informatics Department, 
University of Economics, Bucharest, Romania 
 
 
E-mail: badina20@yahoo.com 
  
 
Abstract: This paper presents a model for coordinating negotiation processes in concurrent 
inter-organizational alliances. The IT system preserves the autonomy of organizations grouped 
in an alliance while enabling concurrency of their activities, flexibility of their negotiations and 
dynamic evolution of their environment. The purpose of this work is to offer support for small 
and medium enterprises which cannot or do not want to fulfill a big contract alone. This 
approach is illustrated by a sample scenario where partners are printshops grouped in an 
alliance to better accomplish customers’ requests. 
 
Key words: negotiation; virtual enterprises; multi-agent systems; coordination services 
 

1. Introduction 
 

The advent of the Internet has led to the development of various forms of virtual 
enterprises which try to exploit the facilities of the network to achieve higher level 
collaboration goals.  

We try to provide support to the collaborations within an alliance and we propose 
negotiation as a fundamental mechanism for these collaborations.  

In this paper we present how organizations participate and control the status of the 
negotiations and how the negotiation processes are managed. We propose a model for 
coordinating different negotiations that may occur in a virtual alliance. 

We consider a scenario of collaborations within an alliance of distributed 
autonomous printshops. The alliance is a dynamic entity where new printshops may join or 
leave [1]2. A printshop manager interested in joining an alliance fills in an adhesion contract 
with information on his printshop competencies and preferences. If the alliance committee 
accepts it as a new partner, the new member commits to respecting the rules of the alliance 
and the adhesion contract and introduces itself to the other partners. Each printshop 
autonomously manages its contracts and schedules. When a print request reaches a 
printshop, the manager analyses it to understand if it can be accepted, taking into account 



  
Quantitative Methods in Enterprises  

Behavior Analysis under Risk an Uncertainty 
 

 
55 

job schedules and resources availability. If the manager accepts the print request, he may 
decide to perform the job locally or to partially outsource it, given the printshop resource 
availability and technical capabilities. If the manager decides to outsource a job, he starts a 
negotiation within the alliance with selected participants. The manager may split the job into 
slots, notifying the partners about the outsourcing requests for the different slots. If the 
negotiation results in an agreement, a contract is settled between the outsourcer and the 
insourcer printshops, which defines an inter-organizational workflow enacting the business 
process fulfilling the outsourced jobs and a set of obligation relations among participants [8]. 

The printshops alliance scenario shows a typical example of the e-alliances: virtual 
alliances where partner organizations may a priori be in competition with each other, but 
may want to cooperate in order to be globally more responsive to market demand.  

E-Alliance main goal is to provide a software support for inter-organizational 
alliances enabling management of an alliance’s life-cycle and collaborative activities among 
alliance partners [1]. E-Alliance should flexibly support negotiation processes in the alliance 
respecting the autonomy of the partners.  

The main objective of this work is to propose a model for coordinating negotiations 
in a dynamical system with autonomous agents where each agent is in charge of its own 
negotiations (Section 4). In Section 5 we present an example to use this model in describing 
a particular coordination service, namely Block. Finally, Section 6 concludes the paper. 
 

2. E-Alliance infrastructure 
 

The e-Alliance infrastructure is organized in three layers as shown in Figure 1: 

 
Figure 1.  E-Alliance software infrastructure 

 

A first layer is dedicated for different applications according to the specific domain 
in interaction with the Manager of each organization of the alliance (e.g., the printing 
domain). A second layer is dedicated to support the insourcing/outsourcing job within an 
alliance and comprises three facilities: AllF (alliance life-cycle management), ConF (contract 
management) and NegF (negotiation). The third, middleware and coordination layer (CooF) 
offers generic mechanisms to support negotiations in a distributed environment [5]. It is a 
global layer common to the different sites in which the partners of the alliance operate, 
while the two other layers are duplicated on the different sites. 

Figure 2 shows the architecture of the NegF agent: 



  
Quantitative Methods in Enterprises  

Behavior Analysis under Risk an Uncertainty 
 

 
56 

 
Figure 2. The architecture of the negotiation system  

 
A NegF agent assists its printshop manager at a global level (negotiations with 

different participants on different jobs) and at a specific level (negotiation on the same job 
with different participants) by coordinating itself with the NegF of the other partners through 
the CooF, coordination and negotiation middleware. 

Each negotiation is organized in three main steps: initialization; refinement of the 
job under negotiation; and closing. The initialization step allows to define what has to be 
negotiated (Negotiation Object) and how (Negotiation Framework). A selection of negotiation 
participants can be made using history on passed negotiation, available locally or provided 
by the AllF [4]. In the refinement step, participants exchange proposals on the negotiation 
object trying to satisfy their constraints [6]. The manager may participate in the definition 
and evolution of negotiation frameworks and objects. Decisions are taken by the manager, 
assisted by his NegF agent. Decision functions operate in the “Reasoning” box (Fig.2). For 
each negotiation, a NegF manages one or more negotiation objects, one framework and the 
negotiation status. 

A manager can specify some global parameters: duration; maximum number of 
messages to be exchanged; maximum number of candidates to be considered in the 
negotiation and involved in the contract; tactics; protocols for the NegF interactions with the 
manager and with the other NegFs [7]. Differing from [11], where tactics are defined for 
managing the negotiation, here tactics define constraints on the negotiation process. For 
example, a tactic may state that a job has to be outsourced as a block, another one that it 
has to be split in several slots. Executing a tactic corresponds to activating a combination of 
services, implemented above the CooF, producing a coordinated modification of alternatives 
within the current negotiation. Each service manages a local view of the global negotiation, 
translating negotiation decisions to modifications on the set of the visible alternatives on the 
job under negotiation using primitives of the CooF.  

 

3. Coordination services 
 
In order to handle the complex types of negotiation scenarios, we propose six different 
services:  

• Outsrc (resp. Insrc), for outsourcing (resp. insourcing) jobs by exchanging proposals 
among participants known from the beginning [9]; 



  
Quantitative Methods in Enterprises  

Behavior Analysis under Risk an Uncertainty 
 

 
57 

• Block service for assuring that a task is entirely subcontracted by the single partner; 
• Split service manages the propagation of constraints among several slots, negotiated 

in parallel and issued from the split of a single job; 
• Broker: a service automating the process of selection of possible partners to start the 

negotiation; 
• SwapIn/SwapOut services implement a coordination mechanism between two 

ongoing negotiations in order to find and manage a possible exchange between 
their two tasks; 

• Transport service implements a coordination mechanism between two ongoing 
negotiations in order to find and synchronize on the common transport of both tasks. 

These services are able to evaluate the received proposals and, further, if these are valid, the 
services will be able to reply with new proposals constructed based on their particular 
coordination constraints.  

In the following sections we build the model for coordinating negotiations in a 
dynamical system with autonomous agents and, further, we describe the Block service based 
on this model. 

 

4. Building the model 
 
4.1. Basic concepts 
In this setup, at a local level, the model requires a formal description of the rules of 

coordination that manage the behavior of the agent in a negotiation; at a global level, the 
model must provide a global coordination of all negotiations of an agent.  

The fundamentals of the negotiation model are given by the following basic 
concepts: 

An alliance is defined as a quintuple A = <T, P, N, R, O> where:  

1. T denotes the time of the system, assumed to be discrete, linear, and uniform;  

2. P denotes the set of participants in the alliance. The participants may be involved in 
one or many negotiations within the alliance; 

3. N denotes the set of negotiations that take place within the alliance;  

4. R denotes the set of policies of coordination of the negotiations that take place 
within the alliance; 

5. O denotes the common ontology that consists of the set of definitions of the 
attributes that are used in a negotiation.  
A negotiation is described at a time instance through a set of negotiation 

sequences.  

Let Sq = {si | i ∈ℕ} denote the set of negotiation sequences, such that∀ si ,sj ∈ Sq,  i 

≠ j  implies si ≠ sj . A negotiation sequence si ∈ Sq such that si ∈ N(t) is a succession of 
negotiation graphs that describe the negotiation N from the moment of its initiation and up 
to the time instance t.  The negotiation graph created at a given time instance is an oriented 
graph in which the nodes describe the negotiation phases that are present at that time 
instance (i.e., the negotiation proposals sent up to that moment in terms of status and of 
attributes negotiated) and the edges express the precedence relationship between the 
negotiation phases [10].      



  
Quantitative Methods in Enterprises  

Behavior Analysis under Risk an Uncertainty 
 

 
58 

The negotiation phase (ph) indicates a particular stage of the negotiation under 
consideration.  

The Status is the possible state of a negotiation. This state takes one of the 
following values (Status∈{ initiated, undefined, success, failure}): 

• initiated – the negotiation, described in a sequence, has just been initiated; 
• undefined – the negotiation process for the sequence under consideration is 

ongoing; 
• success – in the negotiation process, modeled through the sequence under 

consideration, an agreement has been reached;  
• failure – the negotiation process, modeled through the sequence under 

consideration, resulted in a denial.  
Issues is the set of attributes with associated values that describe the proposals 

made in a negotiation phase.  
Snapshot is the set of combinations between a negotiation aspect (Status) and the 

information that is negotiated (Issues).    
The functions status and issues return, respectively, the state (status) of a 

negotiation instance and the set of the attributes negotiated (issues) within a negotiation 
instance.     

A coordination policy is the set of coordination rules that are used to establish 
various relationships between negotiations regarding the information that may be distributed 
among many participants and many sequences (global rules) or that may be recovered as a 
whole in the same sequence (local rules).  

 
4.2. Metaphor Interaction Abstract Machines (IAM) 
The metaphor Interaction Abstract Machines (IAM) will be used to facilitate modeling 

of the time evolution of a multi-attribute, multi-participant, multi-phase negotiation [2]. In 
IAMs, a system consists of different entities and each entity is characterized by a state that is 
represented as a multiset of resources [3]. It may evolve according to different laws of the 
following form, also called “methods”: 

A1@…@An <>- B1@…@Bm 
A method is executed if the state of the entity contains all resources from the left side (called 
the “head”) and, in this case, the entity may perform a transition to a new state where the 
old resources (A1,…,An) are replaced by the resources (B1,…,Bm) on the right side (called 
the “body”). All other resources of the entity that do not participate in the execution of the 
method are present in the new state.    

The operators used in a method are: 
• the operator  @ assembles together resources that are present in the same state 

of an entity; 
• the operator  <>- indicates the transition to a new state of an entity; 
• the operator & is used in the body of a method to connect several sets of 

resources;  
• the symbol T is used to indicate an empty body.  
In IAMs, an entity has the following characteristics: 

• if there are two methods whose heads consist of two sets of distinct resources, 
then the methods may be executed in parallel; 



  
Quantitative Methods in Enterprises  

Behavior Analysis under Risk an Uncertainty 
 

 
59 

• if two methods share common resources, then a single method may be executed 
and the selection procedure is made in a non-deterministic manner.  

In IAMs, the methods may model four types of transition that may occur to an 
entity: transformation, cloning, destruction and communication.      

Through the methods of type transformation the state of an entity is simply 
transformed in a new state. If the state of the entity contains all the resources of the head of 
a transformation method, the entity performs a transition to a new state where the head 
resources are replaced by the body resources of the method.  

Through the methods of type cloning an entity is cloned in a finite number of 
entities that have the same state. If the state of the entity contains all the resources of a head 
of a cloning method and if the body of the method contains several sets of distinct resources, 
then the entity is cloned several times, as determined by the number of distinct sets, and 
each of the resulting clones suffers a transformation by replacing the head of the method 
with the corresponding body.   

In the case of a destruction of the state, the entity disappears. If the state of the 
entity contains all the resources of the head of a transformation method and if the body of 
the method is the resource T, then the entity disappears.  

In IAMs, the communication among various entities is of type broadcasting and it is 
represented by the symbol “^”. This symbol is used to the heads of the methods to 
predefine the resources involved in the broadcasting. These resources are inserted in the 
current entity and broadcasted to all the entities existent in the system, with the exception of 
the current entity. This mechanism of communication thus executes two synchronous 
operations: 

i) transformation: if all resources that are not pre-defined at the head of the 
method enter in collision, then the pre-defined resources are inserted in the 
entity and are immediately consumed through the application of the method; 

ii) communication: insertion of the copies of the pre-defined resources in all entities 
that are present in the system at that time instance.  

 
4.3. Program Formula 
In a multi-entity system, the metaphor IAMs allows the modeling and control of the 

autonomous evolution process for each entity in the system. Each entity may change its state 
independently of others, using its own resources and the methods of its computational 
space. This approach allows us to model in parallel the evolution of multiple negotiation 
phases. By using the metaphor IAMs, the evolution of the negotiation phases, associated to 
the nodes of a negotiation sequence, will be managed through different methods that are 
put together in a Program Formula (PF). 

Program Formula of a negotiation sequence s - PF(s) – represents the set of the 
methods used to manage the evolution of the sequence s. In our negotiation model, a 
negotiation phase is connected to the set of snapshots of the negotiation status and of the 
instants of the attributes negotiated that are present in a node of the negotiation graph. In 
this way, to specify not only the information regarding the negotiation state and the 
attributes values but also the actions that will contribute to the evolution of the negotiation, 
we model the nodes of a graph of the negotiation sequence as sets of particles, called 
negotiation atoms.  Therefore, a negotiation atom, denoted atom(s,ph), is a set of resources, 
called particles, that describe the negotiation state in terms of the negotiation sequence s for 



  
Quantitative Methods in Enterprises  

Behavior Analysis under Risk an Uncertainty 
 

 
60 

the negotiation stage ph. We defined in this way five types of particles: representation 
particles, event particles, message particles, control particles, and computational particles. 

In our negotiation model, a negotiation sequence keeps, in the nodes of the 
graphs, sets of snapshots, images that a participant has about the negotiation status and 
about the attributes that are negotiated in the current sequence as well as in all other 
sequences for which there is a distribution of information.  This information is modeled 
within the negotiation process as representation particles that are described by three 
parameters: Name, S, and I 

• Name is defined by concatenation of the identifiers of the participants with the 
sequence under consideration (e.g., pjsj).  

• S takes values in the set Status= {initiated, undefined, success, failure}. This 
value corresponds to the value returned by the function status(). 

• I takes values in the set Issues of the negotiated attributes with the associated 
values (e.g., I= {size =1k, cost =9.5k, delay =5}). This value corresponds to the 
value returned by the function issues(). 

In this way, a representation particle of an atom, associated to a sequence s for a 
phase ph, is a snapshot of the sequence s for the phase ph. To provide a detailed description 
of the negotiation sequences involved in a negotiation phase, we define the following 
particles: 

• localr(Name, S, I) : local representation particle. This particle holds the local 
snapshot of the current sequence;  

• extr(Name, S, I) : external representation particle. This particle holds the external 
snapshot that describes the modality in which another sequence perceives the 
same negotiation phase;  

• firstr(Name, S, I) : external negotiation particle. This particle holds the external 
snapshot associated to the sequence that generated the current sequence.  

In this way, a new node of a negotiation sequence may be described through a set 
of representation particles that are part of the same atom.  

The particles event specify the types of transitions used by IAMs in terms of the 
message types that are exchanged within a negotiation. A particle event is described by 
three parameters: 

• Id identifies the atom to be cloned; 
• New_id identifies the newly created atom; 
• Msg contains the negotiation message with data that will contribute to the 

evolution of the negotiation in the newly created atom.  
To facilitate the identification of both the cloning operation and of the direction in 

which the new negotiation atom will evolve, we propose four particles event: clone_propose, 
clone_accept, clone_reject, and clone_create. The particles clone_propose(Id, New_id, Msg), 
clone_accept(Id, New_id, Msg), and clone_reject(Id, New_id, Msg) are modeling an event 
that signals the existence of a new negotiation message of type propose, of type accept, and 
of type reject, respectively. The particle clone_create(Id, New_id, Msg) models an event that 
signals the existence of a new negotiation message that announces creation of a new 
sequence for the current negotiation.  

The particles message model the messages sent to allow their processing in terms 
of their interpretations in a typical negotiation process. The particles message have the 
following parameters: 



  
Quantitative Methods in Enterprises  

Behavior Analysis under Risk an Uncertainty 
 

 
61 

• Rname and New_r_name are identifiers of the sequence that generates the message 
and of a new sequence that is invited to negotiation, respectively. 

• Content represents the content of the message which is a proposal regarding the 
negotiation task.  

• Type represents an identifier of the new coordination policy that satisfies a certain 
pattern and that must be managed by the sequence invited to negotiation.  
We propose four types of message particles: propose, accept, reject, and create. The 

particle propose(Rname, Content) signals the existence of a new proposal in the negotiation 
process, and the particles accept(Rname) and reject(Rname) signal the existence of  an 
acceptance of a proposal and the existence of a denial of a proposal, respectively. The 
proposal to accept and, respectively, to deny was sent by a participant in the negotiation 
through the sequence Rname. The particle create(New_r_name, Type) signals the existence of 
a new sequence that is part of the current negotiation phase and that is identified by 
New_r_name. 

To properly formulate a coherent execution of a negotiation process, we introduced 
the control particles. These particles have several functions in the computation space of a 
negotiation sequence: 

• an identification function (e.g., name(Id)) that identifies the negotiation atoms by 
specifying an unique value to the parameter Id for each atom. This unique value 
allows only to the specified atom to consume various events introduced in the 
system that are addressed to this atom;    

• a limitation function (e.g., start(), enable(), freeze(), waiting()) that introduces the 
concept of control over the methods that may induce errors in negotiation. This 
type of particles limits the number of methods that may be executed in a given 
state. In this manner, we may establish a proper succession in the execution of 
certain methods. For example, we will use the particles enable and freeze to 
favor the methods to consume the events and to consume the messages, 
respectively. Through the aid of these two methods we will introduce a well-
defined order in the negotiation process, first the creation of a negotiation atom 
and, second, the evolution of the negotiation phase in this newly created atom;  

• a notification function (e.g.,  stop(Accord), ready(Accord)).  
 
4.4. Description of the negotiation process  
According to our approach regarding the negotiation, the participants to a 

negotiation may propose offers and each participant may decide in an autonomous manner 
to stop a negotiation either by accepting or by rejecting the offer received. Also, depending 
on its role in a negotiation, a participant may invite new participants to the negotiation. To 
model this type of negotiation, we will make use of the previously defined particles and we 
will propose the methods to manage the evolution of these particles.   

Through the use of the metaphor IAMs, the evolutions of the negotiation phases 
correspond to the evolutions at the atoms level. The evolution may be regarded as a process 
consisting of two stages: a cloning operation of the atom existent in the initial stage and a 
transformation operation within the cloned atom to allow for the new negotiation phase.  

The cloning operation is expressed by a set of methods involving the particles event 
and these methods are used to facilitate the evolution of the negotiation. We propose the 



  
Quantitative Methods in Enterprises  

Behavior Analysis under Risk an Uncertainty 
 

 
62 

following methods associated to the particles event to model the cloning of an atom where 
new message particles are introduced: 

 The method Propose is associated to the particle event clone_propose(Id, 
New_id, Msg) and models the introduction of a new proposal (clone_propose) by 
one of the participants to the negotiation. This method is expressed:   

name(Id) @ enable @ clone_propose(Id, New_ id, Msg)<>- (enable @ name(Id)) & 
(freeze @ name(New_ id) @ propose(Rname, Content)) 
 
- the atom identified by the particle name(Id) is cloned. The new proposal contained 
in the particle propose(Rname, Content) will be introduced in the new atom  
name(New_id).  
 
 The method Accept is associated to the event particle clone_accept(Id, 

New_id, Msg) and models the case when one of the participants sent a message 
indicating acceptance (clone_accept) of an older proposal. This method is expressed: 
name(Id) @ enable @ clone_accept(Id, New_ Id, Msg) <>- (enable @ name(Id)) & 
(freeze @ name(New_ Id) @ accept(Rname)) 
 
- the atom identified by the name(Id) is cloned. The message to accept that is 
contained in the particle accept(Rname)  will be introduced in the new atom name 
(New_id) .  
 
 The method Reject is associated to the event particle clone_reject(Id, New_id, 

Msg) and models the denial of an older proposal  (clone_reject) made by one of the 
participants. This method is expressed:  
name(Id) @ enable @ clone_reject(Id, New_ Id, Msg) <>- (enable @ name(Id)) & 
(freeze @ name(New_ Id) @ reject(Rname)) 
 
- the atom identified by the particle name(Id)  is cloned. The message of denial 
contained in the particle reject(Rname) will be introduced in the new atom 
name(New_ id).  
 
 The method Create is associated to the event particle clone_create(Id, 

New_id, Msg). This method models the invitation of a new sequence (clone_create) 
made by one of the participants toward the distribution of the newly created 
negotiation phase. This method is expressed:  
name(Id) @ enable @ clone_create(Id, New_Id, Msg) @ <>- (enable @name(Id)) & 
(freeze @ name(New_Id) @ create(Rname, Type)) 
 
- the atom identified by the particle name(Id) is cloned and a particle create(Rname, 
Type) is introduced in the new atom name(New_ id) that will subsequently generate a 
new representation particle for the new sequence that is participating to the 
negotiation. 
 

The particles message participate to transformation methods that change the 
negotiation phase of an atom by replacing the representation particles of the negotiation 



  
Quantitative Methods in Enterprises  

Behavior Analysis under Risk an Uncertainty 
 

 
63 

sequences involved in the generation or in the receiving of the messages that are 
exchanged. Next we propose the following transformation methods:  

   The transformation method associated to the particle propose(Rname, Content) 
contributes to the local evolution of a negotiation phase regarding the status and the 
attributes negotiated. This evolution takes place by replacing, in the existing atom, 
all representation particles that are involved (depending on the method) with the 
new particles that have the status changed to undefined, and the set of the 
negotiated attributes (Issues) contains the new proposal expressed in the Content of 
the message particle.  
freeze @ localr(Rname1, S1, I1) @ extr(Rname, S2, I1) @ propose(Rname, 
Content)<>- enable@ localr(Rname1, undefined, I) @ extr(Rname, undefined, I) 
 
 The transformation method associated to a particle accept(Rname) leads to the 

local evolution of a negotiation phase regarding the status. The evolution is made by 
replacing, in the existing atom, the representation particles involved with the new 
particles whose status has been changed from initiated or undefined to success : 
freeze @ localr(Rname1, S1, I1) @ extr(Rname, S2, I1) @ accept(Rname) <>- 
localr(Rname1, success, I1) @ extr(Rname, success, I1)   
 
 The transformation method associated to a particle reject(Rname). This is similar 

to the method of particle accept(Rname), the distinction being that the evolution of 
the negotiation phase is made through modifying the status of the representation 
particles involved from initiated or undefined to failure:  
freeze @ localr(Rname1, S1, I1) @ extr(Rname, S2, I1) @ reject(Rname) <>- 
localr(Rname1, fail, I1) @ extr(Rname, fail, I1) 
 
 The transformation method associated to a particle create(New_r_name, Type) 

contributes to the evolution of a negotiation phase regarding the number of the 
sequences that participate to this negotiation phase. This evolution is made by 
introducing in the corresponding atom a new representation particle:  
freeze @ create(Rname, type) <>- extr(Rname, init, ∅) @ enable 
 
As soon as this sequence is invited to the negotiation, its status is initiated and its 

set of the negotiated attributes is the empty set.  
The evolution of all negotiation atoms and the negotiation phases take place in 

parallel. To model the coordination of the execution of the negotiation process perceived 
within a sequence, we used the communication mechanism among the existing negotiations. 
This type of particles that are part of the communication process among different negotiation 
atoms communicate to all negotiation atoms a certain result.  

In the negotiation processes, the messages hold meta-information regarding the 
content of the messages that describe the proposals in terms of the value of different 
attributes of the negotiation object. To handle the negotiation proposals we use the concept 
of “raw” computation introduced within IAMs. We assume that each of the atoms implicitly 
contains in its state particles for processing different proposals in terms of mathematical 
operations or of strings manipulations. 



  
Quantitative Methods in Enterprises  

Behavior Analysis under Risk an Uncertainty 
 

 
64 

In the next section, we will present, as an example, the description of the Block 
service using the model proposed above.  

 

5. Description of the Block service 
 
The service Block is used in the negotiations where the task must be executed in its 

totality by a single partner of the negotiation process.  Its main role is to mediate the 
negotiation between the printshop that initiated the negotiation and all other printshops that 
are invited to the current negotiation. The mediation is made with the goal of establishing a 
contract regarding the execution of the whole task by a single participant.   

 
Figure 3. Interactions of the Block Service 
 
In this way, a service, called “Block”, is set to manage the constraint to not split the 

subcontracted task in different slots. In figure 3, we presented the services involved in a 
negotiation among a printshop P1 and other two printshops P2 and P3. In this case the 
negotiation begins by the initialization of Outsrc that invites to the negotiation the service 
Block. Subsequently, Block connects the services Insrc of each partner and will coordinate 
bilateral negotiations with the two partners P2 and P3, simultaneously. As soon as all 
services are connected, the interaction process between the participants may begin. During 
this process, the NegF’s of each printshop involved in the negotiations begin to generate and 
exchange proposals and counter-proposals regarding the task at hand.   

The negotiation ends when the printshop P1 reaches an agreement with one of the 
partners (e.g., P2) regarding the set of attributes that describe the task being negotiated. At 
the same time, P1 ends the negotiation with P3, this coordination being provided by the 
service Block. It should be noticed that the negotiation may also end without reaching an 
agreement (e.g., a time limit set for the negotiation has passed or the two partners P2 and 
P3 are no longer interested in the negotiation). 

The following actions will be modeled: 
• initialization of the negotiation: the sequence s1 invites sequences s2 and s3 to the 

negotiation; 
• processing of the negotiation proposals; 
• processing of the messages to accept a proposal ; 
• implementation of the constraint to accept the task as a whole (i.e., the constraint 

regarding the size of the task contracted); 
• processing of the messages to reject a proposal; 
• end of the negotiation. 



  
Quantitative Methods in Enterprises  

Behavior Analysis under Risk an Uncertainty 
 

 
65 

We assume that for each partner involved in the negotiation N there is a 
negotiation sequence. By using Program Formula we define all methods that model the 
entire negotiation process that must be managed by a certain sequence (e.g., sequence s1). 
We have identified this behavior using a particular negotiation sequence named sBlock.  

Assume that the first atom of the negotiation sequence sBlock initially contains the 
following particles:  name(Id), start, localr(Rname1,initiated,∅) – the representation 
particle of the sequence Block, firstr(Rname2,initiated, ∅) – the representation particle of the 
sequence Outsrc, test_size(value) – the particle that contains the size of the task fixed by the 
participant p1. 

Assuming that the sequence sBlock sees all the bilateral negotiations, this sequence 
will participate in the negotiation from the beginning, thus from the moment when 
invitations are transmitted to the potential participants. For each event clone_create(Id, 
New_Id, Msg) a new atom is generated - method (1.). The particle {string_create(Msg, 
Rname, Type)} will call a local computational particle to determine in the variable Msg the 
values of the parameters of the particle create(Rname, Type). The second method (2.) 
generates a new representation particle extr(Rname,initiated,∅) that represents the image 
of the new sequence over this new negotiation phase. The control particle start, that is only 
present in the first atom, limits the introduction of events clone_create to the first atom. In 
this way, all of the cloned atoms, starting with the first atom, will be negotiation phases 
distribute between the participant p1 and only one other participant.  

(1.) name(Id) @ start @ clone_create(Id, New_Id, Msg) @ {string_create(Msg, 
Rname, Type)} <>- (start @ name(Id)) & ( freeze @ name(New_Id) @ 
create(Rname, Type)) 

(2.) freeze @ create(Rname, type) <>- extr(Rname, initiated, ∅) @ enable 
The following two methods manage the dependence of the size of the task 

negotiated, according to the principle Block service. Next, starting from the newly created 
atoms, we will continue the negotiation with the newly received proposals - method (3.). The 
proposal will result in the evolution of the new negotiation phase, only if the constraint 
imposed on the size of the task is satisfied - the computational particle 
{substring(value,Content,true)} verifies this constraint – method (4.).   

(3.) name(Id)@enable @ clone_propose(Id, New_ Id, Msg) @{string_propose(Msg, 
Rname, Content)} <>- (enable @ name(Id)) & ( freeze @ name(New_ Id) @ 
propose(Rname, Content)) 
 

(4.) freeze @ test_size (value) @ localr(Rname1, S1, I1) @ firstr(Rname2, S2, I1) @ 
extr(Rname3, S3, I1) @ propose(Rname, Content) @ {substring(value,Content, 
true)}@ {construct(I1,Content,I)}<>- enable@ localr(Rname1, undefined, I) @ 
firstr(Rname2, undefined, I) @ extr(Rname3, undefined, I) 
 

The methods (5.) to (9.) model the dependencies regarding the status. In all the 
negotiation phases that are valid (those having the control particle enable), the negotiation 
partners may accept the current proposal - method (5.). In the event that the two partners 
will reach an agreement, in the newly created atom, the representation particles for a single 
partner will be in the status success (6. and 7.). We introduce a new control particle 
(waiting) to preserve the negotiation atom only for events of type clone_accept or 
clone_reject (8. and 10.). An agreement is reached only in the event that all three 



  
Quantitative Methods in Enterprises  

Behavior Analysis under Risk an Uncertainty 
 

 
66 

representation particles are in the status success – method (9). In this situation, all other 
negotiation atoms are instructed to stop the negotiation (the particle stop is introduced 
through the broadcasting mechanism in all atoms of the negotiation sequence sBlock).  

(5.) name(Id) @ enable @ clone_accept(Id, New_ Id, Msg) @ { string_accept(Msg, 
Rname)}<>- (enable @ name(Id)) & ( freeze @ name(New_ Id) @ 
accept(Rname)) 

(6.) freeze @  localr(Rname1, S1, I) @ firstr(Rname2, S2, I) @ accept(Rname2)<>- 
localr(Rname1, success, I) @ firstr(Rname2, success, I) @ waiting 

(7.) freeze @ extr(Rname3, S3, I) @ accept(Rname3)<>- extr(Rname3, success, I) @ 
waiting 

(8.) name(Id) @ waiting @ clone_accept(Id, New_ Id, Msg) @ { string_accept(Msg, 
Rname)}<>- name(Id) @ freeze @ accept(Rname) 

(9.) localr(Rname1, success, I) @ firstr(Rname2, success, I) @ extr(Rname3, success, I) 
@ ^stop <>- ready(I)  
Next we present in methods (10.) and (11.) the event of type clone_reject and, in 

method (12.), the message of type reject.  
Method (10.) models the transformation of the event clone_reject in a negotiation 

atom where one of the participants has made a proposal of type accept in the current 
negotiation phase (the particle waiting is created only in a method processing a message of 
type accept – method 7.). The method (11.) models the transformation of the event 
clone_reject into a negotiation atom where, temporary, the proposal made is neither 
accepted nor rejected. The two methods introduce the message particle reject in the current 
negotiation atom. In processing the message reject, we choose to preserve the negotiation 
phase associated to the current atom by modifying all statuses to failure and preventing all 
possible evolutions of the atom through the use of all control particles – method (12.).  

Method (13.) is a rule that completely destroys all the negotiation atoms visible 
through the sequence sBlock, except the negotiation atom that contains the agreement 
regarding the negotiation (the particle stop has been created through this atom – method 
9.).  

(10.) name(Id) @ waiting @ clone_reject(Id, New_ Id, Msg) @ { string_reject(Msg, 
Rname)}<>- freeze @ name(New_ Id) @ reject(Rname) 

(11.) name(Id) @ enable @ clone_reject(Id, New_ Id, Msg) @ { string_reject(Msg, 
Rname)}<>- freeze @ name(New_ Id) @ reject(Rname) 

(12.) freeze @  localr(Rname1, S1, I) @ firstr(Rname2, S2, I) @ extr(Rname3, S3, I)  
@ reject(Rname)<>- localr(Rname1, failure, I) @ firstr(Rname2, failure, I) @ 
extr(Rname3, failure, I) 

(13.) stop <>- #t   
 

6. Conclusions 
 
This paper aims at modeling the negotiation process at least at three levels 

(middleware, multi-agent and human). 
We propose a decentralized multi-issue negotiation model in which a set of agents 

can conduct several one-to-one conversations in a concurrent manner according to the 
coordination services. 



  
Quantitative Methods in Enterprises  

Behavior Analysis under Risk an Uncertainty 
 

 
67 

This kind of alliance is typical of virtual enterprises, e-business, and e-commerce 
networks. 
 

References 
 

1. Alloui, I., Andreoli, J.M., Boissier, O., Bratu, M.B., Castellani, S. and Megzari, K. E-Alliance: a 
Software Infrastructure for Inter-Organizational Alliances, In “9th ISPE 
International Conference on Concurrent Engineering: Research and Applications 
(CE2002)”, Cranfield University (UK), 2002 

2. Andreoli, J.M Object Orientation with Parallelism and Persistence, chapter Coordination as 
negotiation transactions, Kluwer Academic Publishers, 1996 

3. Andreoli, J.M. Coordination in LO, in “Coordination Programming: Mechanisms, Models and 
Semantics” Imperial College Press, 1996 

4. Andreoli, J.M., Castellani, S. and Munier, M. AllianceNet: Information Sharing, Negotiation and 
Decision-Making for Distributed Organizations, in “Proc. of EcWeb”, Greenwhich, 
U.K., 2000 

5. Andreoli, J.M. and Castellani, S. Towards a Flexible Middleware Negotiation Facility for 
Distributed Components, in “Proc. of DEXA <<E-Negotiation>> workshop”, 
Munich, Germany, 2001 

6. Bui, V. and Kowalczyk, R. On constraint-based reasoning in e-negotiation agents, in “AMEC III”, 
LNAI, 2003, pp. 31-46 

7. Carron, T., Proton, H. and Boissier, O. A Temporal Agent Communication Language for 
Dynamic Multi-Agents Systems, in “Proc. of 9th MAAMAW”, LNAI 1647, 1999 

8. Cretan, A. Virtual Alliances among Autonomous Organizations, in “Digital Economy – The sixth 
International Conference on Economic Informatics”, Bucharest, Romania, 2003, pp. 
725-731 

9. Cretan, A., Intelligent Solutions for Virtual Negotiations, in “Information & Knowledge Age – The 
seventh International Conference on Informatics in Economy”, Bucharest, Romania, 
2005, pp. 441-446 

10. Cretan, A., Negotiation processes within inter-organizational alliances, in “Economic 
Informatics Journal”, Vol. XII/No. 3 (47), 2008 

11. Faratin, P. Automated service negotiation between autonomous computational agent, Ph.D. 
Thesis, Department of Electronic Engineering Queen Mary & West-field College, 2000 

12. Keeny, R. and Raiffa, H. Decisions with Multiple Objectives: Preferences and Value Tradeoffs, 
JohnWilley & Sons, 1976 

13. Smith, R. and Davis, R. Framework for cooperation in distributed problem solving, IEEE 
Transactions on Systems, Man and Cybernetics, SMC-11, 1981 

14. Sycara, K. Problem restructuring in negotiation, Management Science, 37(10), 1991 
 
 

 

                                                 
1 Adina Cretan graduated Polytechnic University of Craiova, Faculty of Electromechanical Servo systems in 1994. 
She also follows Master of Business Administration courses within Academy of Economic Studies Bucharest and 
CNAM Paris. 
Currently she is working for Absolute IT Solutions, leading company in providing software solutions for several 
major US companies, as Senior Consultant Software Engineer. 
Main capabilities and skills: advanced programming in Java, PHP, ASP, project management and team leading 
experience. 
Her research interests include multi-agent systems, electronic commerce, use and design of formal methods, 
coordination systems, communication protocols. She has published six articles in these fields. 
She is also interesting in the area of algebra and number theory and she is co-author of two articles. 
 



  
Quantitative Methods in Enterprises  

Behavior Analysis under Risk an Uncertainty 
 

 
68 

                                                                                                                                               
2 Codification of references: 
[1] Alloui, I., Andreoli, J.M., Boissier, O., Bratu, M.B., Castellani, S. and Megzari, K. E-Alliance: a Software 

Infrastructure for Inter-Organizational Alliances, In “9th ISPE International Conference 
on Concurrent Engineering: Research and Applications (CE2002)”, Cranfield University (UK), 
2002  

[2] Andreoli, J.M Object Orientation with Parallelism and Persistence, chapter Coordination as 
negotiation transactions, Kluwer Academic Publishers, 1996 

[3] Andreoli, J.M. Coordination in LO, in “Coordination Programming: Mechanisms, Models and Semantics” 
Imperial College Press, 1996 

[4] Andreoli, J.M., Castellani, S. and Munier, M. AllianceNet: Information Sharing, Negotiation and 
Decision-Making for Distributed Organizations, in “Proc. of EcWeb”, Greenwhich, U.K., 
2000 

[5] Andreoli, J.M. and Castellani, S. Towards a Flexible Middleware Negotiation Facility for Distributed 
Components, in “Proc. of DEXA <<E-Negotiation>> workshop”, Munich, Germany, 2001 

[6] Bui, V. and Kowalczyk, R. On constraint-based reasoning in e-negotiation agents, in “AMEC III”, LNAI, 
2003, pp. 31-46 

[7] Carron, T., Proton, H. and Boissier, O. A Temporal Agent Communication Language for Dynamic 
Multi-Agents Systems, in “Proc. of 9th MAAMAW”, LNAI 1647, 1999 

[8] Cretan, A. Virtual Alliances among Autonomous Organizations, in “Digital Economy – The sixth 
International Conference on Economic Informatics”, Bucharest, Romania, 2003, pp. 725-731 

[9] Cretan, A., Intelligent Solutions for Virtual Negotiations, in “Information & Knowledge Age – The 
seventh International Conference on Informatics in Economy”, Bucharest, Romania, 2005, pp. 
441-446 

[10] Cretan, A., Negotiation processes within inter-organizational alliances, in “Economic Informatics 
Journal”, Vol. XII/No. 3 (47), 2008 

[11] Faratin, P. Automated service negotiation between autonomous computational agent, Ph.D. Thesis, 
Department of Electronic Engineering Queen Mary & West-field College, 2000 

[12] Keeny, R. and Raiffa, H. Decisions with Multiple Objectives: Preferences and Value Tradeoffs, 
JohnWilley & Sons, 1976 

[13] Smith, R. and Davis, R. Framework for cooperation in distributed problem solving, IEEE Transactions 
on Systems, Man and Cybernetics, SMC-11, 1981 

[14] Sycara, K. Problem restructuring in negotiation, Management Science, 37(10), 1991 

 


