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Abstrct: This paper presents a global method for approximation and/or construction of 
surfaces using constraints.  The method is based on a min max problem which describes 
approximation and differential geometric characteristics, constrained in order to achieve 
desired geometrical effects. The numerical solution of the problem takes full advantage of the 
Finite-Elements method and of constrained optimization algorithms. 
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1. Introduction 
 
Approximation of surfaces and construction of offset surfaces has a variety of 

applications. For example: 
• Approximation to a set of scattered points in three-dimensional space 

originated from scientific experiments, earth terrain description, or data from satellites 
• Exchanging format of formal data. It is required in geometric modeling 

systems for free form surfaces, as they use different mathematical representations and 
different polynomial bases for curves and surface representation 

• Conversion between non-polynomial representations (such as rational 
surfaces) to polynomial ones. 

 
Additional motivations for approximation are the ability of merging curves and 

surfaces in order to reduce information or the construction of offset curves and surfaces 
which are needed in tool paths planning for numerical control machines and in construction 
of a thick surface that is used as the outer (or inner) surface of objects such as, a car, an 
airplane, or a mold. 
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Finite element methods are an essential tool for the approximation of a solution of 
a partial differential equation and are based on the weak variational formulation of 
boundary and initial value problems. The importance of this property is twofold: 

• It provides the proper setting for the existence of a very irregular solution to 
differential equations. 

• The solution appears in the integral of a quantity over a domain, which can 
be broken up into the sum of integrals over an arbitrary collection of almost disjoint sub-
domains whose union is the original domain. 

 
These properties allow analysis to be done locally on a typical sufficiently small 

sub-domain, so that polynomial functions of various degrees are adequate for representing 
the local behavior of the solution (see [27]). In order to arrive at a global approximation of a 
solution of a partial differential equation in the finite element method, their contributions of 
local approximation over individual elements are assembled together in a systematic way. 
This leads to schemes which are robust in appropriate norms and insensitive to distortions 
and singularities of the mesh. 

 

Desirable Properties of an Approximation Surface 

We consider the following properties for curve approximation and construction: 
• End Points Interpolation - The approximation surface’s end points should 

interpolate the approximated surface’s end points. 
• End Directions Preservation - The approximation surface’s boundary curves’ 

end tangents should have the same direction as the approximated surface’s boundary 
curves’ end tangents. 

• Parametric and Geometric Continuity - Creation of a smooth approximation 
surfaces. There are cases where a higher parametric continuity degree (  or ) between 
the approximation surface patches is needed. It is also possible to ensure geometric 
continuity of first degree ( ) between the approximation surface patches. 

2. Previous Work 
 
There are several approaches for approximation of curves, surfaces, or points in 

three-dimensional space. Among the early important works in this field for the approximate 
conversion of curves and surfaces as well as the construction of offset curves and offset 
surfaces, we would like to signify the works of [11,26] and [16]-[24]. Among the recent 
works there is the work of Weiss et al. [30], that attempts to provide practical solutions to 
overcome problems of irregular distribution of data points which are over topologically 
irregular domains. The Weiss et al. method includes algorithms to compute a good initial 
parametrization, a procedure for handling weakly defined control points, a shape dependent 
knot refinement, and a fitting strategy to maintain tight tolerances and smoothness 
simultaneously. Their method achieves a high accuracy relative to the published ‘standard’ 
solutions. 

 
Borges and Pastva [9] deal with the problem of fitting a single Bézier curve segment 

to a set of ordered data so that the error is minimized in the total least squares sense. They 
developed an algorithm for applying the Gauss–Newton method to this problem with a 
direct method for evaluating the Jacobian based on implicitly differentiating a pseudo-
inverse. Chen Guo-Dong and Wang Guo-Jin [10] consider simultaneous fitting of multiple 
curves and surfaces to 3D measured data captured as part of a reverse engineering process, 
where constraints exist between the parameters of the curves or surfaces. Enforcing such 
constraints may be necessary 

• to produce models of sufficiently accurate tolerances for import into a CAD 
system, and 
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• to produce models which successfully reproduce regularities and symmetries 
required by engineering applications. 

 
There are several works in the CAGD field that use Bernstein-Bézier finite elements 

in the context of approximation. One of the earliest works on actual approximate conversion 
is Bercovier and Jacobi [3, 4] and Luscher [25]. Examples of later works that use FEM in 
CAGD are hierarchical methods for linear spline approximation and construction of surface 
triangulations or quadrangulations by adaptively subdividing a surface to a form of tree. It is 
used in an approximation to a set of scattered points in three-dimensional space using 
hierarchical spline and surface approximation methods such as in [8], or for approximation 
over irregular domain as introduced in [5, 6, 7, 31]. An implementation of cubic tetrahedral 
Bernstein-Bézier finite elements and their application in the context of facial surgery 
simulation is presented in [28] 

 

3. Our Approach and its Strategy 
 
Our approach uses the combination of the finite element method with the 

Bernstein-Bézier representation, introducing a valuable finite element due to the many 
advantages of the Bernstein-Bézier shape functions [14]. It introduces the construction of 
surfaces given by piecewise definitions of their parameter range and allows surface editing, 
both in the direction of several (lower order) surfaces approximating a single given one, or, 
conversely replacing several by a single one. This approach exploits the p-method and the h-
method in FEM in order to improve approximation. This is done by using elements of higher 
degrees to overcome areas that are difficult to approximate and by using elements with 
lower degrees for approximating the rest of surface for implementing the p-method. For the 
implementation the h-method we use element mesh which is refined to increase accuracy. In 
order to achieve desired geometrical properties for the approximation surface, we 
incorporate parametric ( - ) and geometric ( ) continuity constraints between the 
approximation surface patches, and other constraints, such as a constraint for the 
interpolation of the approximation surface end points with the end points of the given 
surface, or, a constraint to enforce the directions of the end edges of each boundary curve 
control polygon of the approximation surface to have the same directions as the tangents at 
the end points of the approximated surface boundary curves. 

 
The strategy we use (see [3, 4]) is a global and continuous method for the 

approximation and construction of parametric surfaces. The method is based on a variational 
formulation which includes geometrical relations between surfaces and constraints upon the 
geometry and/or parameterization of the approximation surface. The variational formulation 
is based on the squared integrals of the zeroth, first, and second derivative (semi) norms of 
the approximation and approximated surfaces. We introduce the Lagrangian multiplier 
formulation for the constraints implementation. A weighting factor is related to each 
derivative (semi) norm. These weighting factors allow one to control the approximation of 
the related norm. The solution of this constrained variational problem is done by the Finite 
Element Method (FEM) over Bernstein basis functions. 

Outline of this Paper 

Description of the unconstrained problem, the constrained problem and its 
solution, is presented in sections 2-4. In section 5, a survey of the methods for estimating the 
approximation errors is given. Section 6, introduces the constraints we use to improve the 
approximation. A number of examples involving constraints, for surface degree reduction, 
surface merging and construction of offset surfaces are shown in section 7. 
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4. The Problem 

Problem Statement 

 
We will first define the problem without constraints. Given a parametric surface: 
  
find the unknown vector function 

 
which is the solution by minimization, of one of the following three related 

problems we consider in this article: 
  (1) 
  (2) 

  (3) 
where 

  (4) 

 (5) 
and 

 (6) 
are the zeroth, first, and second error (semi) norms, respectively, and , , and  

positive moduli which are used as weighting factors. 
 

Solution for the Problem Using the FEM Technique 

In the following section we present the solution of the problem stated in section 2.1 
using the FEM technique. The solution process includes: the partition of the problem’s 
domain into two-dimensional elements, the calculation of a stiffness matrix  and load 
vector  for a given element , the assembly of the elements’ stiffness matrices and load 
vectors into the main stiffness matrix and load vector, and the calculation of the 
approximation error. The solution to one of the problems (1-3), follows the Galerkin-Ritz 
solution scheme (a computational example for the Rayleigh-Ritz and Galerkin methods, 
using the strong form of Poisson’s equation can be seen in [29]). 

The Approximation FEM Space 

Given the partition: 

  (7) 
of the rectangular range 
  (8) 
each sub-range 
  (9) 
for  is the global parameter range of an 

element , where  and  is the number of elements. 
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We use the following linear transformation to establish the relation between the 

global parameters  and the local parameters : 

  (10) 

where 

  (11) 

 
We introduce an  dimensional approximation space , consisting of 

functions which are piecewise  Bézier patches over the range . Let 

(12) 
 

 
We define 

  (13) 

to be the minimization space, where  is the finite-dimensional subspace (12) 
of . 

 

Problem Description for a given element  

Using partition (7) and given element , where  and  is the 
number of elements, we set: 

  (14) 

 (15) 
and 

 (16) 
to be the zeroth, first, and second error (semi) norms for the element , and for the 

element sub-range  (as in (9)), respectively. 
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Let 

  (17) 

where 
  (18) 
or, 

  (19) 

where for the -th element, 
  
is the vector of the unknown Bézier points,  is the element load vector and 

 is the element stiffness matrix. 
 
Our objective is to find for all  the function  which is taken over the 

space , in order to approximate  in some sense to be defined later. 
 

General Solution of the Problem 

 
After integration element by element, we obtain: 

  (20) 

or 

  (21) 

The elements’ stiffness matrices , and load vectors , , are 
assembled into the global stiffness matrix  and load vector . 

 
The minimum of each  in (21), is given by the approximation surface , 

where  is the solution of the system 
  (22) 
The system (22) is linear symmetric positive definite, and we use the  

algorithm or the Conjugate-Gradient [32] to solve it. The coordinate components of  
are decoupled, and the solution of the system refers to each coordinate component by itself. 

 

Properties of the Global Stiffness Matrix 
 
The global stiffness matrix is sparse, square banded, symmetric and positive 

definite. All of its elements are positive, the largest element per row or column is in the main 
diagonal, and the sum of all elements in a row (or in a column), is constant for each n. Its 
graph’s shape is determined by the numbering of each of the degrees of freedom involved in 
the problem. 

 
Let, 
•  be the sum of degrees of freedom for all the 

elements, 
• ElementsAlongU, ElementsAlongV be the number of elements along u and v 

parameter lines respectively, 
• and NodesAlongU, NodesAlongV be the number of nodes along u and v 

parameter lines respectively (every node contains 3 degrees of freedom). 
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For each element of degrees , there are  degrees of 

freedom. Every boundary curve which shares two neighboring elements (patches) decreases 
the total number of degrees of freedom by: 

 
 
Every cross section of such two boundary curves (meaning, at a cross section of four 

neighboring elements) decreases the total number of degrees of freedom by . The total sum 
of degrees of freedom at the cross sections is: 

  
 
Therefore, the total number of the problem’s degrees of freedom and the order of 

the global stiffness matrix is at most . The creation of the global stiffness matrix is 
fast and efficient, since it involves only the assembly of the element stiffness matrices, which 
are pre-calculated and small. 

 

The constrained Problem and its solution 

 
Among the exiting numerous algorithms for solving a constrained optimization 

problem, some solve the constrained problem by replacing it with a family of unconstrained 
optimization problems. We use the Lagrangian multiplier formulation that converts the 
constrained minimization problem, 

 
into the following unconstrained min max problem, 

  (23) 

where 
  (24) 
 

 is called the Lagrange multiplier for the constraint . Solution of 
problem (23) with regard to the degrees of freedom in  and  yields the following 
necessary conditions: 

 

  (25) 

 

Error Estimation 

 
Since the approximation depends on the parametrization of  and , it 

does not necessarily yield orthogonal error vectors between corresponding values of 
parameters. The absolute Euclidean minimum (or maximum) is at the point where two 
normals are collinear. Therefore a re-parametrization is needed so that the correction of the 
parametrization will direct the error vectors to be as orthogonal as possible to the tangent 
plane of  at . This will result in a better error estimation [16]. 

 
We use two types of discrete error estimators: 
 
• the largest error Euclidean distance : 
  (26) 
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• the maximal angle deviation , between the normals: 

 (27) 
 
In order to use error measurements which are not dependent on the 

parametrization, we use the zeroth, first and second derivative error (semi) norms (4-6) for 
error estimation. The zero derivative error norm (squared error integral) is the  norm. The 
first and second derivative error (semi) norms are used to estimate the error in the first and 
second partial derivatives displacements. 

 
We also use the error (semi) norms ,  and , which 

measure the mean error displacement per unit area, where  is an approximated area of 
. For error in curvature, we use the Gaussian curvature  error norm: 

  (28) 

where  is the Gaussian curvature of the approximated surface , and the 
Gaussian curvature mean deviation error: 

  (29) 

We also use the mean curvature  error norm: 

  (30) 

where  is the mean curvature of the approximated surface , and the mean 
curvature mean deviation error: 

  (31) 

Error estimations of all types presented in this section are presented in tables 1-2, 
for the approximation of a Bézier patch of degrees 5 x 3, with sizes of 3 x 28.5  and 
approximated area of   (see Figure 1), by a Bézier patch with different 
degrees and continuity orders between elements. 

 
degrees segments       

2 x 3 1 x 1 1.479 0.348 2.348264e-
04 

2.523826e-
05 

5.107362e-
05  

3 x 3 1 x 1 0.380 0.240 1.465209e-
05 

1.818131e-
06 

5.128979e-
05  

4 x 3 1 x 1 0.365 0.220 1.395186e-
05 

1.595004e-
06 

1.254311e-
05  

5 x 3 1 x 1 0.0 1.13e-07 4.447024e-
19 

2.911940e-
18 

1.115636e-
04  

3 x 3 2 x 1 0.450 0.245 1.396280e-
05 

2.934349e-
06 

1.763063e-
04  

4 x 3 2 x 1 0.041 0.039 1.395732e-
07 

7.531847e-
08 

1.712148e-
04  

2 x 3 3 x 1 0.540 0.276 1.530292e-
05 

2.978221e-
06 

1.713536e-
04  

3 x 3 3 x 1 0.051 0.058 1.651474e-
07 

1.487066e-
07 

1.769908e-
04  
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4 x 3 3 x 1 0.002 0.006 5.137242e-
10 

2.253008e-
09 

1.929809e-
04  

4 x 3 3 x 1 0.002 0.005 4.885186e-
10 

1.619946e-
09 

1.930424e-
04  

4 x 3 3 x 1 0.011 0.001 8.110637e-
09 

8.997212e-
09 

1.935975e-
04  

 
 

Table 1: Various error estimations by the derivative error (semi) norms, for the 
approximation of a Bézier patch of degrees 5 x 3, with sizes of 3 x 28.5  and approximated 
area of  , by a Bézier patch with different degrees. See Figure: 1 
 

 
 degrees     
2 x 3 3.339768e+00 9.764867e-01 5.592338e+00 8.735588e-01 
3 x 3 2.059826e+00 5.233216e-01 3.087451e-01 5.079714e-02 
4 x 3 6.194731e-01 1.573840e-01 2.562805e-01 4.216526e-02 
5 x 3 2.012408e-14 5.084107e-15 1.561175e-14 2.442805e-15 
3 x 3 8.055888e-01 3.363193e-01 3.795821e-01 5.976159e-02 
4 x 3 8.473989e+00 3.537743e+00 8.030403e-02 1.264311e-02 
2 x 3 4.354274e-01 5.014103e-01 4.724982e-01 7.439097e-02 
3 x 3 1.259487e+01 1.449829e+01 1.270752e-01 1.998752e-02 
4 x 3 8.319730e+01 9.577063e+01 6.819476e-01 1.072628e-01 
4 x 3 8.309422e+01 9.565197e+01 6.816075e-01 1.072093e-01 
4 x 3 8.281638e+01 9.533215e+01 6.837922e-01 1.075529e-01 

Table 2: Various error estimations by the curvature error norms, for the same given 
Bézier patch and approximation surfaces as in Table 1. 

 
 

 

                        
 

(a) Given surface                                                      (b) The approximation surface. 
 

Figure 1: Reduction of a Bézier patch of degrees (5 x 3), with sizes of 3 x 28.5  
and approximated area of  , by an approximation ( ) Bézier surface with three 

patches of degrees (4 x 3). 
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5. Incorporation of Constraints 
 
In this section we introduce the description and implementation of constraints 

which are imposed upon the approximation or the construction of surfaces in order to 
achieve the following desired geometrical effects: 

Constraints for Surface’s End Points Interpolation 

In order to create a better approximation, the end points of the approximation 
surface should interpolate the end points of the given surface. Meaning, the conditions: 

 (32) 
must be satisfied. 

First Derivative Interpolation at the End Points of Boundary Curves 

The direction of the end edges of each boundary curve control polygon of the 
approximation surface, are constrained to have the same directions as the tangents at the 
end points of the approximated surface boundary curves. The method used for this 
constraint, is the same one used for curves, as described in [4]. 

Constraints for , Continuity Between Elements 

Higher continuity between elements will not necessarily improve the approximation 
but will create a smoother approximation surface, a feature which is desirable in many 
cases, such as, the design of mechanical parts which requires first- or second- order 
smoothness, or in the definition of a tool path for NC machine where we need the speed 
and the acceleration of the tool to be continuous. This can be achieved by  and  
parametric continuity. 

 
A Bézier surface may contain several patches joined together with a given 

continuity. Let  and  be two Bézier patches defined over 
 and  respectively.  and  have  

continuity along the parametric line , if 

  (33) 

For Bézier surfaces it is possible to reduce the surface problem to several curve 
problems. Using the cross boundary derivative (the derivative at the common boundary 
curve) with respect to the global parameters  we obtain: 

  (34) 

It follows that along the parametric line , 

  (35) 

Equations (35) are conditions on rows of control points across the boundary curve 
which represents  Bézier curves (see [14,23]). 

The continuity constraints can be imposed only on part of the patches. This is 
usually done on a boundary of complete two rows or two columns in the mesh of elements. 
This way we construct a surface the in some parts it has a high continuity degree (  for 
example), and in other parts a  continuity is left to produce a corner or a cusp. 

 

Examples 

Approximation of surfaces can be used in the applications of: degree reduction of 
surfaces, merging of surfaces with large number of patches, and construction of offset 
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surfaces. Reduction of degree of high order polynomial surfaces to polynomials of a lower 
order. The degree reduction approximation might reduce or increase the number of surface 
patches. It is sometimes needed to merge a surface which is constructed from many small 
patches into a surface with less patches of the same degrees, or even with higher degrees. 
The construction of a parametric offset surface, is done by approximating the offset surface 

 to the given surface . 
  (36) 
where  is the principal normal vector, and  is the offset distance along 

. 
 
Among the surfaces that we used in the section, there are the following three 

surfaces: 
 
1. The surface BRODE (Fig. 2(a)), which is a 9 x 9 Bézier patch with sizes of 100 

x 140 mm. 
2. The surface SEITE1(Fig. 2(b)), which is a collection of 9 x 7 Bézier patches, 

each of degrees 3 x 3 and sizes about 500 x 2200 mm. 
3. The surface SURFB (Fig. 2(c)), which is a collection of 17 x 63 Bézier patches, 

each of degrees 5 x 5 and sizes about 450 x 1800 mm. 
 
These surfaces were used as test examples (bench-mark) for the comparison 

between spline conversion methods (See for example, [12, 13, 15, 24]. 
 
The bench-mark specifications were to convert these surfaces to a 3 x 3 or a 5 x 5 

Bézier or B-Spline surface with a maximal error tolerance of 0.1 and 0.01 . For each of 
the surfaces involved in the bench-mark a table was presented, in which the degrees and the 
segment number of the result approximation surface are listed in the first two columns. In 
the third column the inner continuities in both parameter directions are entered. The fourth 
column contains the compression factor. The compression factor for the conversion to Bézier 
surface is given by the quotient: 

  

and the compression factor for the conversion to B-Spline surface is given by the 
quotient: 

 

 
In the fifth column the approximation presents the prescribed approximation 

tolerance, and in the sixth column the largest error Euclidean distance 
  
is given. We will use the same format of table for our examples. 
 

   
(a) The BRODE surface                              (b) The SEITE1 surface 
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(c) The SURFB surface 

 
Figure 2 : Benchmark Surfaces. 

Constraints results 

Examples of constrained approximations are introduced in our results of the bench-
mark surfaces BRODE, SEITE1 and SURFB in tables (3-5). These examples emphasize the p-
method and h-method of FEM in the approximation. We see for example in table (5) that 
presents approximation results for the SURFB surface (Figure 2(c)), that each line in the table 
introduces an approximation with a different mesh size (signified by the segments column of 
the table) and patch degrees. One can see the different continuity degrees achieved by the 
imposing  or  continuity constraints between the approximation surface patches. The 
last two lines of table (3), represent an approximation of the BRODE surface (Figure 2(a)), 
that uses a mesh of elements of different degrees, attached with  continuity. These results 
display how the combination of the hp-methods in FEM was used in the approximation 
scheme of this research. 

Another example that displays an approximation of an offset surface is presented in 
figure (3). The approximation offset surface that approximated a surface of degrees (3 x 3) 
(Figure 3(a)), has an offset distance of -0.4 , two patches of degrees (3 x 3) and 
(  continuity between its patches. The approximation integrates the end points and 
first derivative interpolation constraints. 

All the above examples integrated the end points and first derivative interpolation 
constraints (see sections 6.1-6.2, respectively). 
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Table 3. surface: BRODE: 
 surface: BRODE: degree: 9 x 9, segments: 1 x 1 

degree segments minimal compression error measured 
  continuity factor tolerance error 
3 x 3 5 x 3  0.42 0.01 0.008 
 3 x 2  1.04 0.01 0.01 
 2 x 2  1.56 0.1 0.042 
 3 x 2  1.04 0.1 0.018 
4 x 3 2 x 2  1.25 0.1 0.017 
4 x 4 2 x 2  1.0 0.01 0.006 
 2 x 1  2.0 0.1 0.026 
4 x 5 2 x 1  1.66 0.1 0.016 
5 x 3 1 x 2  2.08 0.1 0.023 
5 x 5 2 x 2  0.69 0.01 0.002 
 2 x 1  1.39 0.1 0.015 
 1 x 1  2.78 0.1 0.022 
7 x 6 1 x 1  1.79 0.1 0.004 
7 x 7 1 x 1  1.56 0.1 0.001 
3,5,3 x 3,4 3 x 2  1.04 0.01 0.008425 
3,3,2,2,3,3 
x 3,4 6 x 2  0.52 0.01 0.009057 

 
Table 4. surface: SEIT1 

urface: SEITE1: degree: 3 x 3, segments: 9 x 7 
degree segments minimal compression error measured 
  continuity factor tolerance error 
3 x 3 8 x 7  1.13 0.01 0.0088 
 2 x 7  4.5 0.1 0.1 
4 x 3 2 x 7  3.6 0.1 0.068960 
5 x 3 3 x 7  2.0 0.01 0.003987 
5 x 5 3 x 7  1.33 0.01 0.003985 
 2 x 7  2.0 0.1 0.023714 
 1 x 7  4.0 0.1 0.1 

 
Table 5. surface: SURFB 

 surface: SURFB: degree: 5 x 5, segments: 17 x 63 
degree segments minimal compression error measured 
  continuity factor tolerance error 
3 x 3 17 x 29  4.89 0.01 0.008632 
 17 x 16  8.86 0.1 0.076872 
3 x 4 17 x 13  8.72 0.1 0.016416 
3 x 5 17 x 13  7.27 0.01 0.004687 
 17 x 8  11.81 0.1 0.041205 
4 x 4 14 x 17  6.48 0.01 0.008888 
 8 x 11  17.53 0.1 0.079889 
5 x 4 6 x 11  19.47 0.1 0.095811 
5 x 5 14 x 13  5.88 0.01 0.008055 
 6 x 6  29.75 0.1 0.075385 
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(a) Bézier patch of degrees                                    (b) The shaded surfaces 

 
 

                                   

 
 

Figure 3: An offset Bézier surface to the surface (a), with two patches of 
degrees , (  continuity between patches and offset length of -0.4. 

 

6. Conclusions and Future Work 
 
In our work we introduced a global and continuous method for approximation 

and/or construction of surfaces. It is based on a minimization of a functional which makes 
use of global and continuous criteria (4-6), for approximation and construction. Constraints 
were integrated in the approximation to obtain some specific characteristics. Some of the 
properties we would like to obtain are aimed at improving the approximation, such as, end 
points interpolation and end direction preservation. Others are designed to impose a 
desirable form upon the approximation surface, for instance, parametric continuity between 
the approximation surface’s patches. The constraints used were linear, equality, and 
operates on a discrete parameter range. We used the Lagrangian multiplier formulation for 
the constrained problem. 

 
 
The numerical solution of the functional uses FEM with the Bernstein-Bézier 

representation for the shape functions, and presents cardinal advantages: 
• The approximation method operates globally on the given problem’s 

domain. 
• Segmentation of the approximation surface is natural to FEM, because of the 

subdivision of a FEM problem’s domain into elements. 

(c) The shaded surfaces (d) The surfaces with drawing of the tangents 
along the v-parameter lines 
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• Every element is treated separately, and its "influence" is added to the 
general stiffness matrix such that there is no limitation on the form of the general range 
combined from a collection of elements. 

• It is possible to approximate, using different elements with different degrees 
of elements (Bézier patches). 

• The system of equations is linear for any degrees of the elements and any 
order of parametric continuity  between the elements. 

• The use of Bézier-Bernstein representation grants good properties for the 
stiffness matrix, and saves much of the approximation calculation using proper solution 
methods (such ). Most of the calculation of the element matrices is prepared in 
advance and can be used regardless of the subdivision of problem’s domain. 

• There is not a pre-requirement on the given surface’s continuity. 
• It is possible to approximate, using different elements with different degrees 

of parametric continuity, including . 
 
As the next step in this research, we intend to include different types of linear and 

nonlinear constraints, of equality and/or inequality types, on a discrete or a continuous 
parameter range. These constraints are aimed at improving the approximation, or at 
imposing a desirable form upon the approximation surface. Examples of such constraints 
are, optimal construction using reparametrization, opening loops for given looped surfaces, 
or avoiding loops in the approximation of offset surfaces. 
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