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Abstract: Set- Partitioning in Hierarchical Trees (SPIHT) is a state-of-art zero-tree based 
image coder with excellent rate-distortion performance in the noise free environments. 
However in presence of noise they are extremely sensitive to the bit errors. Even a single bit 
error may lead a substantial degradation in the quality.  Our investigations reveal that the 
use of three linked lists in SPIHT increases the inter-bitplane dependencies of bits and 
therefore causes the errors to propagate down the bitstream. In this paper we propose a 
modified coder which uses only a single list. The list is initialized, processed and exhausted 
within each bit-plane, thereby removing dependencies of inter-plane bits. The proposed 
coder is known as Single List SPIHT (SL-SPIHT) image coder. Additionally, this coder is 
memory efficient as compared to the SPIHT. Simulation results show that under the same 
channel conditions, SL-SPIHT can improve the quality of reconstructed image by 5-6 dB 
compared to that of SPIHT. 
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1. Introduction 
 
Real time transmission of images through handheld mobile/portable devices (with 

limited memory, processing power and battery life) requires an image coding algorithm that 
can compress images efficiently with reduced memory requirements. The contemporary 
modern image coding methods (e.g. SPIHT [3]0) support a wide range of functionality but 
requires significant amount of memory during their execution. Also, wireless channels are 
highly prone to bit errors; therefore the devolvement of error resilient techniques is an 
additional challenge for memory constrained environments. 

Among the many methods of compression, Discrete Wavelet Transform (DWT) 
approach has become a popular technique [2-5]. Due to energy compaction nature of 
wavelet transform coding, it is common that a large number of wavelet coefficients are 
quantized to zero value. The concept of zero-tree structure was first introduced by Lewis and 
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Knowles [1] for efficient representation of zero wavelet coefficients after perceptual 
thresholding. This data structure was later elegantly combined with the bit-plane coding 
scheme by Shapiro for embedded wavelet image coding, popularly known as embedded 
zero-tree wavelet (EZW) [2]. Intensive efforts have been drawn into this research field ever 
since and many zero-tree image coders are being developed 000. The SPIHT [3] and virtual 
SPIHT (VSPIHT) [5] algorithms are the simplest and most efficient variations of EZW. These 
techniques have excellent rate distortion characteristics in noise free environments. However 
in the presence of noise they are extremely sensitive to bit errors. Even a single bit error may 
lead to loss of synchronization between the encoder and the decoder beyond erroneous bit. 
As a result the quality of the reconstructed image degrades substantially unless proper error 
correcting methods are used. Thus the transmission of zerotree coded images over noisy 
channels is still a challenging problem.  

One of the problems with SPIHT and VSPIHT coders are the large memory 
requirement due to the uses three continuously growing lists.  Also, these lists are 
responsible for propagation of errors down the bitsream.  Since information accumulated in 
list during any pass is used for coding of significant/insignificant pixels/sets in the 
subsequent passes. In case any error occurred, it will lead to wrong entries in the lists, 
thereby severely affecting the decoding process.  

Recently, Arora et. al. proposed a memory efficient wavelet image coding scheme 
[2] which uses a single list for encoding and decoding. Here onward, this algorithm is 
referred as Single List SPIHT (SL-SPIHT). The emphasis of the paper was more on memory 
reduction, similar to work done in [7] [8]. In this paper we will explore the error resiliency 
feature of SL-SPIHT.  

As compared to SPIHT, the SL-SPIHT uses only one list to store the significance 
information of the sets. The use of single and re-usable list in SL-SPIHT not only reduces the 
memory requirement but also improves the error resiliency. Since the list is re-initialized at 
the beginning of each pass, in SL-SPIHT algorithm hence the entries are not used in the 
subsequent passes. This is beneficial as it makes the algorithm pass by pass independent, 
puts a check on the consecutively growing size of the lists and makes a foundation to study 
the error resiliency feature of the SL-SPIHT algorithm. 

Rest of the paper is organized as follows. Section II briefly reviews the SPIHT 
algorithm and its error resiliency feature. The SL-SPIHT algorithm is described in Section III. 
Simulation Results are presented in Section IV, where memory analysis and error resiliency 
performance of SL=-SPIHT algorithm is compared with that of SPIHT algorithm. Finally, 
paper is concluded in Section V. 

3. Review of SPIHT algorithm 

SPIHT Algorithm  
The SPIHT algorithm is based on hierarchical set partitioning, which can be thought 

of as a divide-and-conquer strategy. The SPIHT algorithm views wavelet coefficients as a 
collection of spatial orientation trees, with each tree consisting of coefficients from all sub-
bands that correspond to the same spatial location in an image. A partitioning rule is used to 
divide a given set into smaller subsets so that significant coefficient can be efficiently 
isolated. 

The SPIHT consists of two main stages namely sorting and refinement. For practical 
implementation, SPIHT maintains three linked lists viz. the list of insignificant pixels (LIP), the 
list of significant pixels (LSP) and the list of insignificant sets (LIS). At the initialization stage, 
SPIHT initializes the LIP with all the pixels in the highest level of the pyramid (i.e. LL 
subband), the LIS with all the coefficients at the highest level of the pyramid except those, 
which don't have descendents, and LSP as an empty set. During the sorting pass, the 
algorithm first traverses through the LIP, testing the magnitude of its elements against the 
current threshold and representing their significance by 0 or 1. Whenever a coefficient is 
found significant, its sign is coded and it is moved to LSP. The algorithm then examines the 
LIS and performs a magnitude check on all coefficient of set. If a particular tree/set is found 
to be significant, it is partitioned into its subsets (children and grandchildren) and tested for 
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significance. Otherwise a single bit is appended to the bit stream to indicate an insignificant 
set (or zero-tree). After each sorting pass SPIHT outputs refinement bits at the current level of 
bit significance of those pixels which had been moved to LSP at higher threshold, resulting in 
the refinement of significant pixels with bits that reduce maximum error. This process 
continues by decreasing current threshold by factor of two until desired bit rate is achieved. 

  

Error Analysis 

The SPIHT coder generates different type of bits that have different degree of 
vulnerability to the errors. The effect of error in some bits is more severe, damaging the 
image globally by disturbing the synchronization between the encoder and decoder. On the 
other hand, some bits are less sensitive to errors, and damage the image locally without 
disturbing the synchronization. 

 Significance bits: During the LIP and LIS testing, pixels or trees are checked for 
significance. Error in significant bits will result in the propagation of error down to the bit-
stream during the decoding process. A significant coefficient or set may be deemed 
insignificant and vice-versa. This will cause the decoder to update the list with the wrong 
nodes and can cause a large degradation in the decoded image quality. Thus a single bit 
error in the significant bits has global effect and may damage the entire image. 

 Sign bits: The sign bit of a wavelet coefficient is generated, immediately after its 
significance test during sorting pass, when it is found significant. An error in this bit will 
change only the phase of the coefficient and does not disturb the synchronization between 
the encoder and the decoder. The effect of an error in the sign bit corrupts the image locally 
only during the inverse wavelet transform. 

 Refinement bits: The refinement bits are generated during refinement pass. An 
error in these bits has less severe effect and distorts the image locally only. The effect of 
error in a refinement bit is limited to a single coefficient and does not disturb the progression 
of the decoding process after it occurs.  

 Based on the degree of their sensitivity, the bits generated by SPIHT algorithm 
can be classified into two classes:  

 Critical Bits (CB) and  
 Non-Critical Bits (NCB).  

The critical bits are those, which causes the loss of synchronization between the 
encoder and decoder. A single bit error in critical bit causes the failure of the reconstruction 
process after that point. It consists of significant bits generated during LIP and LIS tests. The 
non-critical bits on the other hand cause less severe errors. The effect of error in a non-
critical bit is limited to a single coefficient and does not disturb the progression of the 
decoding process after it occurs. The non-critical bits consist of the sign and refinement bits. 

3. SL-SPIHT algorithm 
 
The SL-SPIHT algorithm was first proposed by Arora at. al. 0 to reduce the working 

memory requirement of SPIHT algorithm. In this algorithm, the functions of all three lists are 
performed by a single list. The list is re-initialized at the beginning of each bit-plane to avoid 
the inter-dependency on the previous bit-planes.   

 

Working of SL-SPIHT Algorithm 

 
The SL-SPIHT algorithm works as follows. 
After the ‘Nd’ level of wavelet decomposition of input image, depending upon the 

value of the largest wavelet coefficient, the initial threshold is calculated as 2n where 
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2 maxlog . The LL-sub-band is coded separately. The coefficients of LL-sub-band 

are represented in (n+1) bit sign-magnitude form. In the first (most significant) bit-plane, the 
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sign bit and the most significant bit from magnitude of the LL sub-band coefficients are 
embedded in the bitstream. In the subsequent bit-planes, only the nth most significant bits of 
LL-sub-band coefficient are transmitted. In order to encode the remaining sub-band 
coefficients, they are linked through spatial orientation trees with their roots in the LL-sub-
band. To define a uniform child-parent relationship, it is assumed that first quarter of LL-sub-
band coefficients have no descendents and remaining three-quarter of the coefficients have 
their children in sub-bands of correspondingly same orientation.  

A single list referred as List of Pixel Sets (LPS) is used in this algorithm. At the 
beginning of each bit-plane, LPS is initialized with address of those coefficients of LL-
subband that have decedents. For each entry in LPS, test the significance of the set. For 
insignificant sets, a single bit is appended to the bitstream to indicate a zerotree. However, if 
a particular set is found to be significant, it is then partitioned into two its subsets (children 
and grandchildren). First the significance of each of the children is tested and if a particular 
child is found significant, its sign bit is transmitted and current threshold is subtracted from 
its magnitude. Then the significance of grandchildren is tested. If the set of grandchildren 
(provided they exist) is found to be significant, the addresses of children are added at the 
end of LPS. After testing every entry of LPS (including those which are added in the current 
pass), it is re-initialized and threshold is reduced by a factor of two. The entire process is 
repeated for the next pass (bit-plane).  It should be noted that same coefficients might 
become significant in more than one pass, depending upon its absolute value. In order to 
avoid the multiple transmission of its sign bit, sign bits are masked (or flagged) once they are 
transmitted at the first significant test of the corresponding coefficient. If in the subsequent 
passes, the same coefficient again tests significant at lower thresholds, the transmission of 
sign bit is avoided as it has already been masked. 

At the decoder, the reverse process is performed.  At the arrival of first significant 
bit of a coefficient, it is reconstructed as n25.1 ×± . The decoder adds or subtract 12 −n to its 
current reconstructed value depending upon whether it inputs significant bit in the current 
pass or not. 

It is observed that the working memory requirement in any pass is proportional to 
the maximum number of entries in LPS during that coding pass. Further, since in SL-SPIHT, 
LPS is re-initialized, the same memory can be used in the next and subsequent passes, 
whereas in SPIHT, the lists keep growing progressively thereby increasing memory 
requirements. Additionally, the entire encoding and decoding of a bit-plane is performed in 
a single pass, whereas SPIHT requires two passes, sorting and refinement.   

 

Error Analysis of SL-SPIHT 

Another attractive feature of the SL-SPIHT algorithm is its improved error resilience. 
This can be explained as follows. Since SL-SPIHT uses a single re-useable list. The LPS list is 
initialized, processed and exhausted within each pass, making encoding/decoding of each 
pass independent to its preceding passes. This is in contrast to the SPIHT algorithm, where 
the continuously growing lists (LIP, LIS and LSP) make encoding/decoding of each pass 
dependent over the previous passes.  This is because, list entries are processed, updated in a 
pass (bit-plane), which will be used to code significant/insignificant information in the next 
pass. This inter-pass dependency of bitstream makes SPIHT coder highly sensitive to the 
channel errors. 

On the other hands, in SL-SPIHT the LPS is initialized at the beginning of each pass, 
so that even if the list entries during earlier passes are corrupted due to channel errors, it 
will not affect the decoding of subsequent passes. Therefore, if the decoder can be 
synchronized again (by using pass-by-pass markers), then there will be decoding error in 
that pass. This will lead to the reconstruction of good quality image even in presence of 
errors. Therefore, the use of single re-usable list to achieve pass by pass independency and 
use of markers to synchronize will lead to better error resiliency in SL-SPIHT. 

The use of markers at the end of each pass (bit-plane) will have no impact on the 
decoding of SPIHT in presence of errors, but it has significant impact on the decoding of SL-
SPIHT bitstream. For example, consider a case when error occurs in a bit and all its following 
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bits until the end of the pass are zero. This situation is more likely to happen in early passes 
when threshold is high & most of the trees are insignificant (zerotrees) and all the refinement 
bits are also zero. In this case since all the bits are of same magnitude (i.e.0) and correspond 
to same type of information (generally zerotree significance) the use of marker will be very 
much advantageous. As in this case the only error observed is due to loss of synchronization 
which is again regained in the next pass by the use of marker and since the single list is 
reinitialized at the beginning of each pass hence the problem of wrong entries in the list is 
also avoided. This will lead to a large improvement in the quality of the decoded image.  

4. Simulation results 
 
In order to highlight the features of SL-SPIHT, we have considered two gray level 

test images, BARBARA and BOAT, each of depth 8 bits/pixel (bpp) and of size 512×512. 
Each image is wavelet transformed with 5 levels of decomposition using 9/7 bi-orthogonal 
filter. First we compare the memory requirements of SL-SPIHT with that of SPIHT, followed by 
the error resiliency. 

  

Memory Requirements 

In this section we will compare the memory requirements of the auxiliary list(s) in 
SL-SPIHT with that of SPIHT and NLS 0 algorithms.  There are two types of memory 
requirement in zerotree coders: fixed memory to store wavelet coefficients and variable 
working memory to store list entries. For the comparison purpose, we consider only variable 
working memory requirements. Though NLS does not use any lists, but needs fixed size 
arrays and state tables. For an image of size NM × , the working memory requirement in NLS 

0 is 
2164
MNWMNMNM NLS +⎟

⎠
⎞

⎜
⎝
⎛ += bytes, where W is the number of bytes used to store each 

wavelet coefficient (say two bytes). This working memory is always fixed and is independent 
of number of bit-planes to be executed. However, in SPIHT and the proposed coder, the size 
of required working memory at any instant depends upon the current number of entries in 
the list(s). For the purpose of comparisons, memory requirements at the end of each pass (or 
bit-plane) and the maximum (or worst case) memory requirement are considered.  

 
SPIHT 
In SPIHT three linked lists are used namely LIP, LSP and LIS. Each entry in LIP and 

LSP is a single coordinate of a wavelet coefficient whereas LIS also requires type (A or B) 
information to distinguish nodes. 

Total memory required in SPIHT, MSPIHT  (in bits). 
MSPIHT = c NLIP + (c-1) NLIS+ c NLSP       (1) 
Where 
NLIP = number of entries in LIP. 
NLSP = number of entries in LSP.   
NLIS = number of entries in LIS. 
c= number of bits to store addressing information of a coefficient [2*log-

2(max(M,N))] 
Each element in LIS requires (c-2) bits for addressing, since it contains coefficients 

with descendents and an extra bit is required for defining the ‘type’ of entries. 
In the worst case,  
NLIP + NLSP = MN 
NLIS = MN/4  (as the coefficients having no descendents or the highest frequency 

sub-bands will never enter into LIS.) Thus the maximum working memory requirement in 
SPIHT is 

4
)15(max MNcM SPIHT −=                (2) 
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SL-SPIHT 
Since SL-SPIHT uses only one list namely LPS. In the list, entries correspond to 

address of a wavelet coefficient (except the coefficients of LL-sub-band and those which have 
no offsprings), so each element can be stored by using only (c-2) bits.  If NLPS be the numbers 
of entries in LPS and MSL-SPIHT (in bits) denotes the total working memory required in the SL-
SPIHT algorithm, then 

 MSL-SPIHT =  (c-2) NLPS              (3) 
In the worst case,  
 NLPS  = MN/4 

Thus, the maximum working memory requirement in SL-SPIHT is 

 
4

)2(max MNcMMESH −=         (4) 

For example, for any 512×512 image, c=2*log2 (512)=18 bits, W= 2 bytes (say),  
=max

SPIHTM  729088 bytes  

=max
NLSM  294912 bytes 

=max
MESHM  131072 bytes 

Thus, 1:25.2:56.5:: maxmaxmax =MESHNLSSPIHT MMM . It should be noted that NLS uses fixed 

working memory equal to max
NLSM .  Thus it can be seen that the SL-SPIHT algorithm has 

reduced memory requirement by factors of 5.56 and 2.25 in comparisons to SPIHT and NLS 
respectively.  

At the end of every pass, the number of elements in the list is counted. Based on 
this, the memory requirement for SPIHT and SL-SPIHT are calculated according to Eqs. (1) 
and (3) respectively. Table 1 compares the memory requirements for two test images at the 
end of first 10 passes.  It can be observed that SL-SPIHT has about 65-75% memory saving 
as compared to SPIHT, which is reasonably significant. 

 
 

Table 1. Memory Requirements for SPIHT and SL-SPIHT for BARBARA and BOAT Images (All 
values are in K Bytes) 

BARBARA  BOAT  Pass 
count SPIHT SL-SPIHT SPIHT SL-SPIHT 

1 1.032 0.384 1.076 0.384 
2 1.176 0.384 1.598 0.480 
3 1.864 0.480 3.842 1.072 
4 4.473 1.200 11.919 3.576 
5 15.135 4.408 29.118 8.192 
6 51.891 14.440 59.114 17.248 
7 101.157 27.744 101.125 28.424 
8 168.327 45.816 169.339 57.088 
9 260.939 72.040 337.228 94.408 
10 413.191 114.632 539.563 129.528 

 

Error Resiliency Performance 

In order to compare the error resiliency of SPIHT and SL-SPIHT, we have considered 
the same set of gray level images. A marker (corresponding to number of bits in each pass) 
is placed at the end of each pass in the bitstreams of both coders.  

The encoded bits are transmitted over Binary Sequential Channel (BSC) with Bit 
Error Rate (BER) ranging from 10-4 to 10-1. The quality is measured in terms of Peak Signal to 
Noise Ratio (PSNR). All the results are averaged for 20 independent channel conditions. Fig. 
1(a) and (b) show the average image quality for different bit rates for BARBARA and BOAT 
images respectively. Both the images are coded at 0.25 bpp. 
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It can be observed from these Figures that SL-SPIHT algorithm consistently out 
performs SPIHT. The relative improvement is more at lower BERs than at higher BERs.  More 
specifically, SL-SPIHT has up to 5-6 dB improvement over SPIHT for BARBARA image and 
about 2-3 dB for BOAT Image. This is due to the fact that use of marker in SL-SPIHT results 
in significant improvement as compared to the SPIHT as discussed earlier. Hence it is 
capable of totally nullifying the effect of error in special case when all the bits at the end of 
the pass are zero. This effect leads to improvement in quality in SL-SPIHT as compared to 
SPIHT both with markers. 

 

5. Conclusion 
 
In this paper, we have shown that SL-SPIHT algorithm is not only memory efficient 

as reported in 0, but also error resilience. Both these features are obtained due to the use of 
single re-usable list in SL-SPIHT as opposed to three continuously growing lists in SPIHT. It 
was observed that SL-SPIHT may result up to 75% of memory saving and up to 5-6 dB quality 
improvement under the same channel conditions. This type of coders is very useful for real 
time image transmission over wireless channel through hand held mobile devices such as 
digital cameras of mobile sets (which has scarcity of memory). 
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Figure 1. PSNR versus BER comparisons of SPIHT and SL-SPIHT for (a) BARBARA and (b) BOAT 
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