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Abstract: This paper presents a method for calculation of reliability measures for supermarket 
refrigeration system. The system and its components can have different performance levels ranging from 
perfect functioning to complete failure and, so it can be interpreted as a multi-state system. Calculated 
reliability measures are used for decision making of system structure. The suggested approach based on 
combined Universal Generating Functions and stochastic processes method for computation of 
availability, output performance and performance deficiency for multi-state system. Corresponding 
procedures are suggested. A numerical example is presented in order to illustrate the approach. 
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1. Introduction 
 

Supermarkets suffer serious financial losses owing to problems with their 
refrigeration systems. A typical supermarket may contain more than one hundred individual 
refrigerated cabinets, cold store rooms and items of plant machinery which interact as part 
of a complex integrated refrigeration system within the store. Things very often go wrong 
with individual units (icing up of components, electrical or mechanical failure, and so 
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forth…) or with components which serve a network of units (coolant tanks, pumps, 
compressors, and so on). 
 The most commonly used refrigeration system for supermarkets today is the 
multiplex direct expansion system (Baxter (2002), IEA Annex 26 (2003)). All display cases 
and cold store rooms use direct expansion air-refrigerant coils that are connected to the 
system compressors in a remote machine room located in the back or on the roof of the 
store. Heat rejection is usually done with air-cooled condensers with simultaneously working 
axial blowers mounted outside. Multiple compressors are mounted on a skid, or rack, and 
are piped with common suction and discharge refrigeration lines. Using multiple 
compressors in parallel provides a means of capacity control, since the compressors can be 
selected and cycled as needed to meet the refrigeration load. 
 Due to the system’s highly integrated nature, a fault in a single unit or item of 
machinery can’t have detrimental effects on the entire store, only decrease of system cool 
capacity. Failure of compressor or axial condenser blower leads to partial system failure 
(degradation of output cooling capacity) as well as to complete failures of the system. We 
treat refrigeration system as multi-state system (MSS), where components and systems have 
an arbitrary finite number of states. According to the generic MSS model (Lisnianski and 
Levitin 2003), the system can have different states corresponding to the system’s 
performance rates. The performance rate of the system at any instant   is a discrete-state 
continuous-time stochastic process . 

In this paper, a generalized approach (Lisnianski, 2004), (Lisnianski, 2007) was 
extended and applied for decision making for multi-state supermarket refrigeration system 
structure. The approach is based on the combined Universal Generating Functions UGF) and 
stochastic processes method for computation of availability, output performance and 
performance deficiency for multi-state system. 
 

2. The Method Description 
 
2.1. Performance Stochastic Process for Multi-state Element 

In general case any element j in MSS can have kj different states corresponding to different 

performance, represented by the set { }1,..., jj j jkg g=g , where gji is the performance rate of 

element j in the state i, { }1,2,..., ji k∈ .  

At first stage in according to the suggested method a model of stochastic process should be 
built for each multi-state element in MSS. Based on this model state probabilities 

 

( ) Pr{ ( ) },  {1,..., }ji j ji jp t G t g i k= = ∈ , 

for every MSS's element { }1,...,j n∈  can be obtained. These probabilities define output stochastic 

process Gj(t) for each element j in the MSS. 
At the next stage the output performance distribution for the entire MSS at each time instant t 

should be defined based on previously determined states probabilities for all elements and system 
structure function. At this stage UGF technique provides simple procedure that is based only on 
algebraic operation.  

Without loss of generality here we consider a multi-state element with minor failures and 
repairs.  
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2.2. Markov Model for Multi-state Element 
 If all times to failures and repair times are exponentially distributed the performance 
stochastic process will have Markov property and can be represented by Markov model. 
Here for the simplicity we omit index j and assume that element has k different states as 
presented in the Fig. 1. For Markov process each transition from the state s to any state m, 
(s, m=1,…,k) has its own associated transition intensity that will be designated as asm. In our 

case any transition is caused by element's failure or repair. If m<s, then sm sma λ= , where 

smλ  is a failure rate for the failures that cause element transition from state s to state m. If 

m>s, then sm sma μ= , where smμ  is a corresponding repair rate. With each state s the 

corresponding performance gs is associated. 
 

 
Figure 1. State-space diagram for Markov model of repairable Multi-state element 

Let ( ) , 1, ,  sp t s k= … be the state probabilities of element’s performance process 

( )G t at time t: ( ) Pr{ ( ) },  1, , ;   0.s sp t G t g s k t= = = … ≥  

The following system of differential equations for finding the state probabilities 

( ) , 1, ,  sp t s k= … for the homogeneous Markov process can be written 

1 1

( ) ( ) ( )
k k

s
i is s si

i i
i s i s

dp t p t a p t a
dt = =

≠ ≠

⎡ ⎤
⎢ ⎥= −⎢ ⎥
⎢ ⎥⎣ ⎦
∑ ∑ . (1) 

In our case all transitions are caused by element's failures and repairs. So, 
corresponding transition intensities isa  are expressed by the element’s failure and repair 

rates. Therefore, the corresponding system of differential equations may be written 
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1
12 1 21 2

2
12 1 21 23 2 32 3

1, 1 , 1

( ) ( ) ( )

( ) ( ) ( ) ( ) ( )

...
( ) ( ) ( )k

k k k k k k

dp t p t p t
dt

dp t p t p t p t
dt

dp t p t p t
dt

μ λ

μ λ μ λ

μ λ− − −

= − +

= − + +

= −

. (2) 

We assume that initial state will be the state k with best performance. Therefore, by 
solving the system (2) of differential equations under initial conditions 

( ) ( ) ( ) ( )1 2 10 1,  0 0 0 0k kp p p p−= = … = = = , the states probabilities ( ) , 1, ,sp t s k= …  can 

be obtained.  

2.3. UGF for Multi-state System Reliability Evaluation 
 The generic MSS model consists of the performance stochastic processes 

( ) ,  1, ,   j jG t j n∈ = …g for each system element j, and the system structure function that 

produces the stochastic process corresponding to the output performance of the entire MSS: 

1( ) ( ( ),..., ( ))nG t f G t G t= . At the previous stage all stochastic processes Gi(t), j=1,2,…,n 

were completely defined by output performance distribution at any instant t for each system 
element.  

In a traditional binary-state reliability interpretation (Modarres et al 1999) a 
reliability block diagram shows the interdependencies among all elements. The purpose is to 
show, by concise visual shorthand, the various block combinations (paths) that result in 
system success. Each block of the reliability block diagram represents one element of 
function contained in the system. All blocks are configured in series, parallel, standby, or 
combinations thereof as appropriate. The blocks in the diagram follow a logical order which 
relates the sequence of events during the prescribed operation of the system. The reliability 
model consists of a reliability block diagram and an associated mathematical or simulation 
model.  
 In a multi-state interpretation each block of the reliability block diagram represents 
one multi-state element of the system. A logical order of the blocks in the diagram is 

defined by the system structure function  1( ( ),..., ( ))nf G t G t  as well as each block's j 

behavior is defined by the corresponding performance stochastic process Gj(t).  
At this stage based on previously determined output stochastic processes Gj(t) for all 

elements j=1,2,…, n, and on the given system structure function 1( ( ),..., ( ))nf G t G t , an 

output performance stochastic process G(t) for the entire MSS should be defined 

1( ) ( ( ),..., ( ))nG t f G t G t= . It may be done by using UGF method.  

At first, individual universal generating function (UGF) for each element should be 
written. For each element j it will be UGF uj(z,t) associated with corresponding stochastic 
processes Gj(t). Then by using composition operators over UGF of individual elements and 
their combinations in the entire MSS structure, one can obtain the resulting UGF U(z,t) 
associated with output performance stochastic process G(t) of the entire MSS by using simple 
algebraic operations. This UGF U(z,t) defines the output performance distribution for the 
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entire MSS at each time instant t. MSS reliability measures can be easily derived from this 
output performance distribution. 

The following steps should be executed: 

1. Having performances gji and corresponding probabilities ( )jip t  for each element j, 

1,... ,  1,... jj n i k= = ,  one can define UGF uj(z,t) associated with output performance stochastic 

process for this element in the following form: 

( ) ( ) ( ) ( )1 2
1 2, jkj j j

j

gg g
j j j jku z t p t z p t z p t z= + +…+  (3) 

2. The composition operators Ωfser (for elements connected in series), Ωfpar (for 
elements connected in parallel) and Ωfbridge (for elements connected in bridge structure) 
should be applied over the UGF of individual elements and their combinations. These 
operators one can find in (Lisnianski and Levitin, 2003), (Levitin, 2005), where corresponding 
recursive procedures for their computation were introduced for different types of systems. 
Based on these procedures the resulting UGF for the entire MSS can be obtained: 

1
( , ) ( ) i

K
g

i
i

U z t p t z
=

= ∑  (4) 

where K is the number of entire system states and gi is the entire system performance in the 
corresponding state i, i=1, …,K.  

3. Applying the operators , ,A E Dδ δ δ  over the resulting UGF of the entire MSS one 

can obtain the following MSS reliability indices: 

–  MSS availability A(t, w) at instant t>0 for arbitrary constant demand w 

1 1
( , ) ( ( , ), ) ( ( ) , ) ( )1( 0).i

K K
g

A A i i i
i= i=

A t w U z t w p t z w p t g wδ δ= = = − ≥∑ ∑  (5) 

– MSS expected output performance at instant t>0 

1 1
( ) ( ( , )) ( ( ) ) ( ) .i

K K
g

E E i i i
i i

E t U z t p t z p t gδ δ
= =

= = =∑ ∑  (6) 

– MSS expected performance deficiency at t>0 for arbitrary constant demand 
w 

1 1
( , ) ( ( ), ) ( ( ) , ) ( ) max( ,0).i

K K
g

D D i i i
i i

D t w U z w p t z w p t w gδ δ
= =

= = = ⋅ −∑ ∑  (7) 

 

3. Numerical Example 
 

Consider the refrigeration system used in one of the Israel supermarkets (Frenkel et 
al. 2010). The system consists of 2 elements: 4 compressors, situated in the machine room 
and 2 main axial condenser blowers. Structure scheme of the system is presented in Fig.2. It 
is possible to add one additional blower. In this case the structure scheme of the system is 
presented in Fig.4.  
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3.1. System with 2 Condenser Blowers 
Series-parallel refrigerating multi-state system with two blowers is presented in 

Figure 2. State-space diagram of the elements of this system is presented in Figure 3. 
 

 

 
Element 1 Element 2 

Figure 2. Series-parallel refrigerating multi-state system with two blowers 

The performance of the elements is measured by their produce cold capacity (BTU 
per year). Times to failures and times to repairs are distributed exponentially for all 
elements. Elements are repairable. It is possible only minimal repair. Both elements are 
multi-state elements with minor failures and minor repairs. The first element can be in one 
of five states: a state of total failure corresponding to a capacity of 0, states of partial failures 
corresponding to capacities of 2.6·109, 5.2·109, 7.9·109 BTU per year and a fully operational 
state with a capacity of 10.5·109 BTU per year.  For simplification we will present system 
capacity in 109BTU per year units. Therefore, 

( ) { } { }1 11 12 13 14 15, , , , 0, 2.6,5.2,7.9,10.5 .G t g g g g g∈ =  (8) 

The failure rates and repair rates corresponding to the first element are 
1 11 ,  12 .C Cyear yearλ μ− −= =   

The second element can be in one of three states: a state of total failure 
corresponding to a capacity of 0, state of partial failure corresponding to capacity of 5.2·109 
BTU per year and a fully operational state with a capacity of 10.5·109 BTU per year.  
Therefore, 

( ) { } { }2 21 22 23, , 0,5.2,10.5 .G t g g g∈ =  (9) 

The failure rate and repair rate corresponding to the second element are 
1 110 ,  365 .B Byear yearλ μ− −= =   

The MSS structure function is: 
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( ) ( ) ( )( ) ( ) ( ){ }1 2 1 2, min , .sG t f G t G t G t G t= =  (10) 

The demand is constant: w=5.0·109  BTU per year.  
Using combined UGF and stochastic process method we will find MSS availability 

( ),A t w , expected output performance ( )E t  and expected performance deficiency D(t,w).  

4 7.9g =

3 5.2g =

(3)
1,2μ

5 10.5g =

4 Cλ
Cμ

2 2.6g =

1 0g =

(3)
1,2μ

3 Cλ

2 Cλ

Cλ

2 Cμ

3 Cμ

4 Cμ

 

3 10.5g =

2 5.2g =

1 0g =

Bλ

2 Bλ

2 Bμ

Bμ

 

Element 1 Element 2 

Figure 3. State-space diagram of the multi-state system with two blowers 

Applying the described above two-stage procedure, we proceed as follows.  
According to the Markov method we build the following systems of differential 

equations for each element separately (using the state-space diagrams presented in Figure 
3). 

• For element 1: 

11
11 12

12
11 12 13

13
12 13 14

14
13 14 15

15
14 15

( ) 4 ( ) ( )

( ) 4 ( ) ( 3 ) ( ) 2 ( )

( ) 3 ( ) (2 2 ) ( ) 3 ( )

( ) 2 ( ) (3 ) ( ) 4 ( )

( ) ( ) 4 ( ).

C C

C C C C

C C C C

C C C C

C C

dp t p t p t
dt

dp t p t p t p t
dt

dp t p t p t p t
dt

dp t p t p t p t
dt

dp t p t p t
dt

μ λ

μ λ μ λ

μ λ μ λ

μ λ μ λ

μ λ

⎧ = − +⎪
⎪
⎪ = − + +⎪
⎪⎪ = − + +⎨

= − + +

= −
⎩

⎪
⎪
⎪
⎪
⎪
⎪

 (11) 

Initial conditions are: 11 12 13 14 15(0) (0) (0) (0) 0;  (0) 1.p p p p p= = = = = . 

• For element 2:  
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21
21 22

22
21 22 23

23
22 23

( ) 2 ( ) ( )

( ) 2 ( ) ( ) ( ) 2 ( )

( ) ( ) 2 ( ).

B B

B B B B

B B

dp t p t p t
dt

dp t p t p t p t
dt

dp t p t p t
dt

μ λ

μ λ μ λ

μ λ

⎧ = − +⎪
⎪
⎪ = − + +⎨
⎪
⎪

= −⎪⎩

 (12) 

 

Initial conditions are: 21 22 23(0) (0) 0;  (0) 1.p p p= = =  

A closed form solution can be obtained for each of these 2 systems of differential 
equations. All calculations were made using MATLAB®. Corresponding expressions for states 
probabilities are the following. 

• For element 1: 
13 26 39 52

11

13 26 39 52
12

13 26 39 52
13

61 4 4 1( ) ,28561 28561 28561 28561 28561
48 140 132 36 4( ) ,28561 28561 28561 28561 28561
864 1584 582 132 6( ) 28561 28561 28561 28561 28561

t t t t

t t t t

t t t t

p t e e e e

p t e e e e

p t e e e e

− − − −

− − − −

− − − −

= − + − +

= − + − +

= − + − +

13 26 39 52
14

13 26 39 52
15

,

6912 5184 1584 140 4( ) ,28561 28561 28561 28561 28561
20736 6912 864 48 1( ) .28561 28561 28561 28561 28561

t t t t

t t t t

p t e e e e

p t e e e e

− − − −

− − − −

= − + − +

= − + − +

 (13) 

• For element 2: 
750 375

21

750 375
22

750 375
23

84 4( ) ,5625 5625 5625
292 8 284( ) ,5625 5625 5625
5329 2924( ) .5625 5625 5625

t t

t t

t t

p t e e

p t e e

p t e e

− −

− −

− −

= + −

= − −

= + +

 (14) 

Therefore, one obtains the following output performance stochastic processes: 

– element 1:  ( )
1 11 12 13 14 15

1 11 12 13 14 15

{ , , , , } {0, 2.6,5.2,7.9,10.5},
{ ( ), ( ), ( ), ( ), ( )};

g g g g g
t p t p t p t p t p t

= =⎧
⎨ =⎩

g
p

 

– element 2:  ( )
2 21 22 23

2 21 22 23

{ , , } {0,5.2,10.5},
{ ( ), ( ), ( )}.

g g g
t p t p t p t

= =⎧
⎨ =⎩

g
p

 

Having the sets gj, pj(t) for  j=1,2 one can define for each individual element j the 
u-function associated with the element's output performance stochastic process: 

( ) ( ) ( ) ( ) ( ) ( )
( ) ( ) ( ) ( ) ( )

( ) ( ) ( ) ( )
( ) ( ) ( )

13 1511 12 14

2321 22

1 11 12 13 14 15

0 2.6 5.2 7.9 10.5
11 12 13 14 15

2 21 22 23

0 5.2 10.5
21 22 23

,

               ,

,

               .

g gg g g

gg g

u z t p t z p t z p t z p t z p t z

p t z p t z p t z p t z p t z

u z t p t z p t z p t z

p t z p t z p t z

= + + + + =

+ + + +

= + + =

+ +

 (15) 

Using the composition operator 
serf

Ω  for refrigerating MSS one obtains the 

resulting UGF for the entire series MSS 
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1 2( , ) ( ( , ), ( , )).
serfU z t u z t u z t= Ω  (16) 

In order to find the resulting UGF U (z,t) for elements 1 and 2 connected in series 
the operator 

serfΩ  applied to individual UGF u1(z,t) and u2(z,t). 

 

( ) ( ) ( )( )
( ) ( ) ( ) ( ) ( )(

( ) ( ) ( ) )
( ) ( ) ( ) ( ) ( ) ( )
( ) ( ) ( ) ( )

1 2

0 2.6 5.2 7.9 10.5
11 12 13 14 15

0 5.2 10.5
21 22 23

0 0 0
11 21 11 22 11 23

0 2.6
12 21 12 22

, , , ,

          ,

              

          

          t

ser

ser

f

f

U z t u z t u z t

p t z p t z p t z p t z p t z

p t z p t z p t z

p t p t z p t p t z p t p t z

p t p z p t p t z

= Ω =

= Ω + + + +

+ + =

= + + +

+ + ( ) ( )
( ) ( ) ( ) ( ) ( ) ( )
( ) ( ) ( ) ( ) ( ) ( )
( ) ( ) ( ) ( ) ( ) ( )

2.6
12 23

0 5.2 5.2
13 21 13 22 13 23

0 5.2 7.9
14 21 14 22 14 23

0 5.2 10.5
15 21 15 22 15 23

          

          .

          .

p t p t z

p t p t z p t p t z p t p t z

p t p t z p t p t z p t p t z

p t p t z p t p t z p t p t z

+ +

+ + + +

+ + +

+ + +

 (17) 

In the resulting UGF U(z,t) the powers of z are found as minimum of powers of 
corresponding terms.  

Taking into account that ( ) ( ) ( ) ( ) ( )11 12 13 14 15 1 p t p t p t p t p t+ + + + =  and 

( ) ( ) ( )21 22 23 1  p t p t p t+ + = , one can simplify the last expression for U(z,t) and obtain the 

resulting UGF associated with the output performance stochastic process g, p(t) of the entire 
MSS in the following form 

( )
5

1
, ( ) ig

i
i

U z t p t z
=

= ∑  (18) 

where 

( ) ( ) ( )( ) ( )
( ) ( ) ( ) ( )
( ) ( ) ( ) ( ) ( ) ( ) ( )
( ) ( ) ( )
( ) ( ) ( )

1 1 11 11 21

9
2 2 12 22 23

9
3 3 13 14 15 22 13 23

9
4 4 14 23

9
5 5 15 23

0, 1 ,

2.6 10  BTU/year, ,

5.2 10  BTU/year, ,

7.9 10  BTU/year, ,
10.5 10  BTU/year, .

g p t p t p t p t

g p t p t p t p t

g p t p t p t p t p t p t p t

g p t p t p t
g p t p t p t

= = + −

⎡ ⎤= ⋅ = +⎣ ⎦
⎡ ⎤= ⋅ = + + +⎣ ⎦

= ⋅ =
= ⋅ =

 

These two sets 

1 2 3 4 5{ , , , , }g g g g g=g  and ( ) 1 2 3 4 5{ ( ), ( ), ( ), ( ), ( )}t p t p t p t p t p t=p  

completely define output performance stochastic process for the entire MSS.  
Based on resulting UGF U(z,t) of the entire MSS, one can obtain the MSS reliability 

indices. The instantaneous MSS availability for the constant demand level w=5.0·109 BTU 
per year 



  
International Symposium on Stochastic Models  

in Reliability Engineering, Life Sciences and  
Operations Management (SMRLO'10) 

 

 
394 

 

5

1

5

3 4 5
1

( ) ( ( , ), ) ( ( ) ,5)

          ( )1( ( ,5) 0) ( ) ( ) ( ).

ig
A A i

i=

i i
i=

A t U z t w p t z

p t F g p t p t p t

δ δ= = =

≥ = + +

∑

∑
 (19) 

The instantaneous mean output performance at any instant t>0 

( ) ( ) ( ) ( )
5

2 3 4 5
1

( ) ( ( , )) ( ) 2.6 5.2 7.9 10.5 .E i i
i

E t U z t p t g p t p t p t p tδ
=

= = = + + +∑  (20) 

The instantaneous performance deficiency D(t) at any time t for the constant 
demand w=5.0·109 BTU per year: 

( )

( )( ) ( )( ) ( ) ( )

5

1

1 2 1 2

( ) ( ( ), ) ( ) max 5 ,0

                              5 0 5 2.6 5 2.4 .

D i i
i

D t U z w p t g

p t p t p t p t

δ
=

= = ⋅ − =

= − + − = +

∑
 (21) 

Calculated reliability indices A(t), E(t) and D(t) are presented on the Figures  6-8.   
Note that instead of solving the system of K=5*3=15 differential equations (as it 

should be done in the straightforward Markov method) here we solve just two systems. The 
further derivation of the entire system states probabilities and reliability indices is based on 
using simple algebraic equations.  

3.2. System with 3 Condenser Blowers 
To increase reliability level of the system Supermarket decided to add additional 

blower and our goal is to compare reliability indices in new structure. The new refrigerating 
system structure is presented in Figure 4. State-space diagram of the elements of this system 
is presented in Figure 5. 

 

  
Figure 4. Series-parallel refrigerating multi-state system with 3 blowers 
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Like in previous case the system consists of two elements: block of 4 compressors 
and block of 3 blower. The performance of the elements is measured by their produce cold 
capacity (BTU per year). Times to failures and times to repairs are distributed exponentially 
for all elements. Elements are repairable. Both elements are multi-state elements with minor 
failures and minor repairs. The first element can be in one of five states: a state of total 
failure corresponding to a capacity of 0, states of partial failures corresponding to capacities 
of 2.6·109, 5.2·109, 7.9·109 BTU per year and a fully operational state with a capacity of 
10.5·109 BTU per year.  For simplification we will present system capacity in 109BTU per year 
units. Therefore, 

( ) { } { }1 11 12 13 14 15, , , , 0, 2.6,5.2,7.9,10.5 .G t g g g g g∈ =  (22) 

The failure rates and repair rates corresponding to the first element are 
1 11 ,  12 .C Cyear yearλ μ− −= =   

The second element can be in one of 4 states: a state of total failure corresponding 
to a capacity of 0, state of partial failure corresponding to capacity of 5.2·109 BTU per year 
and two fully operational states with a capacity of 10.5·109 BTU per year.  Therefore, 

( ) { } { }* * * * *
2 21 22 23 24, , , 0,5.2,10.5,10.5 .G t g g g g∈ =  (23) 

The failure rate and repair rate corresponding to the second element are 
1 110 ,  365 .B Byear yearλ μ− −= =   

 

4 7.9g =

3 5.2g =

(3)
1,2μ

5 10.5g =

4 Cλ
Cμ

2 2.6g =

1 0g =

(3)
1,2μ

3 Cλ

2 Cλ

Cλ

2 Cμ

3 Cμ

4 Cμ

 

*
23 10.5g =

*
22 5.2g =

*
21 0g =

Bλ

2 Bλ 2 Bμ

3 Bμ

*
24 10.5g =

3 Bλ Bμ

 

Element 1 Element 2 

Figure 5. State-space diagram of the multi-state system with 3 blowers 

The MSS structure function is: 

( ) ( ) ( )( ) ( ) ( ){ }* *
1 2 1 2, min , .sG t f G t G t G t G t= =  (24) 

The demand is constant: w=5.0·109  BTU per year.  
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Using combined UGF and stochastic process method we will find MSS availability 

( ),A t w , expected output performance ( )E t  and expected performance deficiency D(t,w) 

for the system with additional blower.  

Applying the described above two-stage procedure, we proceed as follows.  

1. According to the Markov method we build the following systems of differential 
equations for each element separately (using the state-space diagrams 
presented in Figure 5). 

      For element 1 all calculations were proceeded earlier (13). 
      For element 2: 

*
* *21
21 22

*
* * *22
21 22 23

*
* * *23
22 23 24

*
* *24
23 24

( ) 3 ( ) ( )

( ) 3 ( ) ( 2 ) ( ) 2 ( )

( ) 2 ( ) (2 ) ( ) 3 ( )

( ) ( ) 3 ( ).

B B

B B B B

B B B B

B B

dp t p t p t
dt

dp t p t p t p t
dt

dp t p t p t p t
dt

dp t p t p t
dt

μ λ

μ λ μ λ

μ λ μ λ

μ λ

⎧
= − +⎪

⎪
⎪

= − + +⎪⎪
⎨
⎪ = − + +⎪
⎪
⎪ = −
⎪⎩

 (25) 

Initial conditions are: * * * *
21 22 23 24(0) (0) (0) 0;  (0) 1.p p p p= = = =  

A closed form solution can be obtained for the system of differential equations. 
Corresponding expressions for states probabilities are the following. 

For element 2: 
* 750 375 1125
21

* 750 375 1125
22

* 750 375 1125
23

*
24

8 8 8 8( ) ,421875 140625 140625 421875
292 92 64 8( ) ,140625 46875 15625 140625
10658 64 3358 8( ) ,140625 15625 46875 140625
389017( ) 4

t t t

t t t

t t t

p t e e e

p t e e e

p t e e e

p t

− − −

− − −

− − −

= + − −

= + − −

= − − −

= 750 375 1125292 10658 8 .21875 140625 140625 421875
t t te e e− − −+ + +

 (26) 

Therefore, one obtains the following output performance stochastic processes: 

– element 1: ( )
1 11 12 13 14 15

1 11 12 13 14 15

{ , , , , } {0, 2.6,5.2,7.9,10.5},
{ ( ), ( ), ( ), ( ), ( )};

g g g g g
t p t p t p t p t p t

= =⎧
⎨ =⎩

g
p

 

– element 2: 
( )

* * * * *
2 21 22 23 24
* * * * *
2 21 22 23 24

{ , , , } {0,5.2,10.5,10.5},
{ ( ), ( ), ( ), ( )}.

g g g g
t p t p t p t p t

⎧ = =⎪
⎨ =⎪⎩

g
p

 

1. Having the sets gj, pj(t) for  j=1,2 one can define for each individual element 
j the u-function associated with the element's output performance stochastic 
process: 
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( ) ( ) ( ) ( ) ( ) ( )
( ) ( ) ( ) ( ) ( )

( ) ( ) ( ) ( ) ( )
( ) ( ) ( )

13 1511 12 14

** * *
2321 22 24

1 11 12 13 14 15

0 2.6 5.2 7.9 10.5
11 12 13 14 15

* * * * *
2 21 22 23 24

* 0 * 5.2 *
21 22 23

,

               ,

,

               

g gg g g

gg g g

u z t p t z p t z p t z p t z p t z

p t z p t z p t z p t z p t z

u z t p t z p t z p t z p t z

p t z p t z p t z

= + + + + =

+ + + +

= + + + =

+ + ( )10.5 * 10.5
24 .p t z+

 (27) 

2. Using the composition operator 
serf

Ω  for refrigerating MSS one obtains the 

resulting UGF for the entire series MSS 
*

1 2( , ) ( ( , ), ( , )).
serfU z t u z t u z t= Ω  (28) 

In order to find the resulting UGF U (z,t) for elements 1 and 2 connected in series 
the operator 

serfΩ  applied to individual UGF u1(z,t) and u2(z,t). 

( ) ( ) ( )( )
( ) ( ) ( ) ( ) ( )(

( ) ( ) ( ) ( )( ) )
( ) ( ) ( ) ( ) ( ) ( ) ( )( )
( )

1 2

0 2.6 5.2 7.9 10.5
11 12 13 14 15

* 0 * 5.2 * * 10.5
21 22 23 24

* 0 * 0 * * 0
11 21 11 22 11 23 24

12

, , , ,

          ,

              

          

          

ser

ser

f

f

U z t u z t u z t

p t z p t z p t z p t z p t z

p t z p t z p t p t z

p t p t z p t p t z p t p t p t z

p t p

= Ω =

= Ω + + + +

+ + + =

= + + + +

+ ( ) ( ) ( ) ( ) ( ) ( )( )
( ) ( ) ( ) ( ) ( ) ( ) ( )( )
( ) ( ) ( ) ( ) ( ) ( ) ( )( )
( ) ( ) ( ) ( ) ( )

* 0 * 2.6 * * 2.6
21 12 22 12 23 24

* 0 * 5.2 * * 5.2
13 21 13 22 13 23 24

* 0 * 5.2 * * 7.9
14 21 14 22 14 23 24

* 0 * 5.2 *
15 21 15 22 15 23

t

          

          .

          

z p t p t z p t p t p t z

p t p t z p t p t z p t p t p t z

p t p t z p t p t z p t p t p t z

p t p t z p t p t z p t p

+ + + +

+ + + + +

+ + + +

+ + + ( ) ( )( )* 10.5
24 .t p t z+

 (29) 

In the resulting UGF U(z,t) the powers of z are found as minimum of powers of 
corresponding terms.  

Taking into account that ( ) ( ) ( ) ( ) ( )11 12 13 14 15 1 p t p t p t p t p t+ + + + =  and 

( ) ( ) ( ) ( )* * * *
21 22 23 24 1  p t p t p t p t+ + + = , one can simplify the last expression for U(z,t) and 

obtain the resulting UGF associated with the output performance stochastic process g, p(t) of 
the entire MSS in the following form 

( )
5

1

, ( ) ig
i

i

U z t p t z
=

= ∑  (30) 

where 

( ) ( ) ( ) ( )
( ) ( ) ( )
( ) ( ) ( ) ( ) ( ) ( )
( ) ( ) ( ) ( )
( )

*
1 1 11 11 21

9 *
2 2 12 21

9 * *
3 3 13 21 14 15 22

9 * *
4 4 14 23 24

9
5 5 1

0, 1 ,

2.6 10  BTU/year, 1 ,

5.2 10  BTU/year, 1 ,

7.9 10  BTU/year, ,

10.5 10  BTU/year,

g p t p t p t p t

g p t p t p t

g p t p t p t p t p t p t

g p t p t p t p t

g p t p

⎡ ⎤= = + −⎣ ⎦
⎡ ⎤= ⋅ = −⎣ ⎦
⎡ ⎤ ⎡ ⎤= ⋅ = − + +⎣ ⎦⎣ ⎦
⎡ ⎤= ⋅ = +⎣ ⎦

= ⋅ = ( ) ( ) ( )* *
5 23 24 .t p t p t⎡ ⎤+⎣ ⎦

 

These two sets 
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1 2 3 4 5{ , , , , }g g g g g=g  and ( ) 1 2 3 4 5{ ( ), ( ), ( ), ( ), ( )}t p t p t p t p t p t=p  

completely define output performance stochastic process for the entire MSS.  
Based on resulting UGF U(z,t) of the entire MSS, one can obtain the MSS reliability 

indices. The instantaneous MSS availability for the constant demand level w=5.0·109 BTU 
per year 

 

5

1

5

3 4 5
1

( ) ( ( , ), ) ( ( ) ,5)

          ( )1( ( ,5) 0) ( ) ( ) ( ).

ig
A A i

i=

i i
i=

A t U z t w p t z

p t F g p t p t p t

δ δ= = =

≥ = + +

∑

∑
 (31) 

The instantaneous mean output performance at any instant t>0 

( ) ( ) ( ) ( )
5

2 3 4 5
1

( ) ( ( , )) ( ) 2.6 5.2 7.9 10.5 .E i i
i

E t U z t p t g p t p t p t p tδ
=

= = = + + +∑  (32) 

The instantaneous performance deficiency D(t) at any time t for the constant 
demand w=5.0·109 BTU per year: 

( )

( )( ) ( )( ) ( ) ( )

5

1

1 2 1 2

( ) ( ( ), ) ( ) max 5 ,0

                              5 0 5 2.6 5 2.4 .

D i i
i

D t U z w p t g

p t p t p t p t

δ
=

= = ⋅ − =

= − + − = +

∑
 (33) 

Calculated reliability indices A(t), E(t) and D(t) are presented on the  Figures  6-8.   
Note that instead of solving the system of K=5*4=20 differential equations (as it 

should be done in the straightforward Markov method) here we solve just two systems. The 
further derivation of the entire system states probabilities and reliability indices is based on 
using simple algebraic equations.  
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Figure 6. MSS instantaneous availability for different types of systems 
 

Curves in Figures 6-8 support the engineering decision-making and determine the 
areas where required performance deficiency level of the refrigeration system can be 
provided by configuration “with additional blower” or by configuration “without additional 
blower”. For example, from the Figure 6 one can conclude that the configuration “without 
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additional blower” cannot provide the required average availability, if it is greater than 
0.998. 
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Figure 7. MSS instantaneous mean output 
performance for different types of systems 

Figure 8. MSS instantaneous mean 
performance deficiency for different types 
of systems 

 

4. Conclusions 
 

The universal method was applied to compute MSS reliability measures: system 
availability, output performance and performance deficiency. The method is based on the 
combined Universal Generating Functions and stochastic processes method.  

The case-study demonstrates that the approach is well formalized and suitable for 
practical application in reliability engineering. It supports the engineering decision-making 
and determines different system structures providing a required reliability/availability level of 
MSS.  
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