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Abstract: The semi-Markov reliability model of the cold standby system with renewal is 
presented in the paper. The model is some modification of the model that was considered by 
Barlow & Proshan (1965), Brodi & Pogosian (1978). To describe the reliability evolution of the 
system, we construct a semi-Markov process by defining the states and the renewal kernel of 
that one. In our model the time to failure of the system is represented by a random variable 
that denotes the first passage time from the given state to the subset of states. Appropriate 
theorems from the semi-Markov processes theory allow us to calculate the reliability function 
and mean time to failure. As calculating an exact reliability function of the system by using 
Laplace transform is often complicated we apply a theorem which deals with perturbed semi-
Markov processes to obtain an approximate reliability function of the system. 
 
Key words:  semi-Markov process; perturbed process; reliability model; renewal standby 
system 
 

1. Description and Assumptions 
 

We assume that the system consists of one operating series subsystem (unit), an 
identical stand-by subsystem and a switch (see Figure 1): 

 

1 2 N

N1 2
 

 
Figure 1.  Diagram of the system 
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Each subsystem consists of N  components. We assume that time to failure of those 

elements are represented by non-negative mutually independent random variables kζ , 

Nk ,...,1= , with distributions given by probability density functions ( )xfk , 0≥x , 

Nk ,...,1= . When the operating subsystem fails, the spare is put in motion by the switch 

immediately. The failed subsystem is renewed. There is a single repair facility. A renewal 
time is a random variable having distribution depending on a failed component. We suppose 
that the lengths of repair periods of units are represented by identical copies of non-negative 

random variables kγ , Nk ,...,1= , which have cumulative distribution functions 

( ) ( )xPxH kk ≤= γ , 0≥x . The failure of the system occurs when the operating subsystem 

fails and the subsystem that has sooner failed in not still renewed or when the operating 

subsystem fails and the switch also fails. Let  U  be a random variable having binary 

distribution 

 
where 0=U , if a switch is failed at the moment of the operating unit failure, and 

1=U , if the switch works at that moment. We suppose that the whole failed system is 

replaced by the new identical one. The replacing time is a non negative random variable η  

with CDF 

 
Moreover, we assume that all random variables mentioned above are independent. 

 

2. Construction of Semi-Markov Reliability Model 
 

To describe the reliability evolution of the system, we have to define the states and 
the renewal kernel. We introduce the following states: 

0 – failure of the system; 

k – renewal of the failed subsystem after a failure of k -th, Nk ,...,1= , component 

and the work of a spare unit 

1+N – both an operating unit and a spare are "up". 
The scheme shown in Figure 2 presents functioning of the system. Let 

∗∗∗= 210 ,,0 τττ - denote the instants of the states changes, and ( ){ }0: ≥ttY  be a random 

process with the state space { }1,,...,1,0 += NNS , which keeps constant values on the half-

intervals [ ) ,...1,0,, 1
∗
+

∗
nn ττ , and is right-hand continuous. This process is not a semi-Markov 

one, as no memory property is satisfied for any instants of the state changes of that one. 

Let us construct a new random process in a following way. Let 00 τ=  and ,..., 21 ττ  

denote instants of the subsystem failures or instants of the whole system renewal. 

The random process ( ){ }0: ≥ttX  defined by equation 

 (1) 

is the semi-Markov one. 
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To have a semi-Markov process as a model we have to define its initial distribution 
and all elements of its kernel. Recall that the semi-Markov kernel is the matrix of transition 
probabilities of the Markov renewal process 

 (2) 
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Figure 2.  Reliability evolution of the standby system 
 
 

where 

 (3) 

From the definition of semi-Markov process it follows that the sequence 

( ){ },...1,0: =nX nτ  is a homo-geneous Markov chain with transition probabilities 

 (4) 

The function 

 (5) 

is a cumulative probability distribution of a random variable iT  that is called a 

waiting time of the state i . The waiting time iT  is the time spent in state  i  when the 

successor state is unknown. The function 

 (6) 

is a cumulative probability distribution of a random variable ijT  that is called a 

holding time of a state i , if the next state will be j .  From here we have 

 (7) 

It follows from that a semi-Markov process with a discrete state space can be 

defined by the transition matrix of the embedded Markov chain: [ ]SjipP ij ∈= ,:  and a 

matrix of CDF of holding times: ( ) ( )[ ]SjitFtF ij ∈= ,:  . 

In this case semi-Markov kernel has a form 
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 (8) 

The semi-Markov ( ){ }0: ≥ttX   will be defined if we define all elements of the 

matrix . 

For Nj ,...,1=  we obtain 

                 where 
 

 
Using Fubini theorem we obtain 

 (9) 

For 0=j  we have 

 

 
(10) 

For Nji ,...,1, =  we get 

  
The same way we obtain 

 (11) 

For Ni ,...,1=  and 0=j  we have 

 

(12) 

where 

 (13) 

From the assumption it follows that 
 (14) 
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All elements of the kernel  have been defined, hence the semi-Markov process 

( ){ }0: ≥ttX  describing reliability of the renewal cold standby system has been constructed. 

  
3. Exponential Time to Failure of Elements 
 

Assuming the exponential time to failure of elements we obtain a special case of 

the model. Suppose that random variables kζ , Nk ,...,1=  are exponentially distributed 

with parameters kλ , Nk ,...,1= , correspondingly. Hence 

 
Because of the no memory property of the exponential distribution, the assumption 

concerning of the whole subsystem renewal can be substituted by the assumption concerning 
failed element renewal. 

In this case we obtain 

 (15) 

for Nj ,...,1= , where 

 
For 0=j  we obtain 

 (16) 

For Nji ,...,1, =  

 (17) 

For 0=j  

 (18) 

 
4. Approximate Model 
 

For simplicity we consider an approximate model. We can assume that the renewal 
time of the subsystem is a random variable γ  having CDF 

 
(19) 

This way we obtain 3-state semi-Markov process with kernel 

, (20) 

where 
 (21) 
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 (22) 

 

Assume that, the initial state is 2 . It means that an initial distribution is 

 (23) 

Hence, the semi-Markov model has been constructed. 

 
5. Reliability Characteristics 

 
A value of a random variable 

 (24) 

denotes a discrete time (a number of state changes) of a first arrival at the set of 

states SA ⊂  of the embedded Markov chain . 

 (25) 

denotes a first passage time to the subset A  or the time of a first arrival at the set 

of states SA ⊂  of the semi-Markov process ( ){ }0: ≥ttX . A function 

 (26) 

is the Cumulative Distribution Function (CDF) of a random variable  denoting 

the first passage time from the state  to a subset A  or the exit time of ( ){ }0: ≥ttX  

from the subset  with the initial state . We will present some theorems concerning 

distributions and parameters of the random variables  which are conclusions from 
theorems presented by Koroluk & Turbin (1976), Silvestrov (1980), Grabski (2002). 
 

THEOREM 1 
For the regular semi-Markov processes such that, 

 (27) 

distributions   are proper and they are the unique solutions of the 

equations system 

. (28) 

Applying a Laplace-Stieltjes (L-S) transformation for the system of integral 
equations we obtain the linear system of equations for (L-S) transforms 

 (29) 

where 

 (30) 

are L-S transforms of the unknown CDF of the random variables , and 

 (31) 
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are L-S transforms of the given functions . That linear system of 

equations is equivalent to the matrix equation 

, (32) 

where 
 (33) 

is the unit matrix,  
 (34) 

is the square sub-matrix of the L-S transforms of the matrix  while 

 (35) 

are one column matrices of the corresponding L-S transforms. 
The linear system of equations (29) for the L-S transforms allows us to obtain the 

linear system of equations for the moments of random variables   

 
THEOREM 2 
If 
• assumptions of theorem 1 are satisfied, 
•  

•  

then there exist expectations  and second moments 

 and they are unique solutions of the linear systems equations, which have 

following matrix forms 

 (36) 

where 

  

 (37) 

where 

, 

 

and  is the unit matrix. 

In our case the random variable  , that denotes the first passage time from the 
state  to the subset  represents the time to failure of the system in our model. 

The function 
 (38) 

is the reliability function of the considered cold standby system with repair. 
In this case the system of linear equations (29) for the Laplace-Stieltjes transforms 

with the unknown functions          is 

 (39) 

Hence 
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 (40) 

Consequently, we obtain the Laplace transform of the reliability function 

 (41) 

The transition matrix of the embedded Markov chain of the semi-Markov process 

( ){ }0: ≥ttX  is 

 , (42) 

where 

 

  

 

The  of the waiting times  are 

 
Hence 

  (43) 

In this case equation (37) takes the form of 

  (44) 

The solution of it is: 

     (45) 

 
6. An Approximate Reliability Function 
 

In this case calculating an exact reliability function of the system by means of 
Laplace transform is a complicated matter. Finding an approximate reliability function of that 
system is possible by using results from the theory of semi-Markov processes perturbations. 
The perturbed semi-Markov processes are defined in different ways by different authors. We 
introduce Pavlov and Ushakov (1978) concept of the perturbed semi-Markov process 
presented by I.B. Gertsbakh (1984). 

Let  be a finite subset of states and  be at least countable subset of 

. Suppose ( ){ }0: ≥ttX  is SM process with the state space  and the kernel 

, the elements of which have the form . 

Assume that 

 (46) 

and 

 (47) 
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Let us notice that . 

A semi-Markov process ( ){ }0: ≥ttX  with the discrete state space  defined by the 

renewal kernel , is called the perturbed process with respect to 

SM process  with the state space  defined by the kernel 

. 

 
We are going to present our version of theorem proved by I.B. Gertsbakh (1984). 
The number 

 (48) 

where 

 (49) 

is the expected value of the waiting time in state  for the process . 

Denote the stationary distribution of the embedded Markov chain in SM process 

 by . Let 

 (50) 

We are interested in the limiting distribution of the random variable 
, that denotes the first passage time from 

the state  to the subset . 
 

THEOREM 3 
If the embedded Markov chain defined by the matrix of transition probabilities  

 satisfies the following conditions 

 (51) 

 (52) 

 (53) 

then 

 (54) 

where  is the unique solution of the linear system of equations 

 (55) 

From that theorem it follows that for small  we get the following approximating 
formula 

 (56) 
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The considered SM process  with the state space  we 

can assume to be the perturbed process with respect to the SM process  

with the state space  and the kernel 

 (57) 

where 

 (57) 

Because  and 

 (57) 

then 

 (57) 

From 

 (57) 

we get 

 (57) 

Notice, that . Hence . Finally we obtain 

 (57) 

The transition matrix of the embedded Markov chain of SM process 

 is 

 (58) 

From the system of equations 

 

(59) 

we get . It follows from the theorem 3 that for a small  

 (60) 

where 

 (61) 

and 
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 (62) 

Therefore we have 

 

(62) 

For  close to  we obtain the approximate reliability function of the system 

 (62) 

From a shape of the parameter  it follows that we can apply this formula only if 

the number , denoting probability of a component failure during a period of an 

earlier failed component, is small. 
Finally we obtain an approximate relation 

 (63) 

where 

 

(62) 

 
7. Conclusions 
 

• The expectation  denoting the mean time to failure of the considered cold 

standby system is 

 
where 

 . 

• The cold standby determines the increase of the mean time to failure 

 

times. 
 

• The approximate reliability function of the system is exponential with a parameter 

 

where 
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