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Abstract: The object of study is a model of nonlinearly perturbed continuous-time renewal 
equation with multivariate non-polynomial perturbations. The characteristics of the distribution 
generating the renewal equation are assumed to have expansions in a perturbation parameter 
with respect to a non-polynomial asymptotic. Exponential asymptotics for such a model as well 
as their applications are given. Numerical studies are performed to gain insights into the 
asymptotical results. 
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1. Introduction 
 

This paper deals with nonlinearly perturbed renewal equations with a new type of 
non-polynomial perturbations. That is, some characteristics of the distribution generating the 
perturbed renewal equation, namely the defect and moments, can be expanded in the 
perturbation parameter ε  up to some order α  with respect to the following non-standard 
non-polynomial asymptotic scale, 

0,as},,=)({ 0 →∈⋅ εεεϕ ω kn
n n Nrrr
r  (1) 

where 0N  is the set of non-negative integers, ∞≤××≡ <1,000 kk NNN L  with 

the product being taken k  times, and ω
r

 is a parameter vector of dimension k .  In (1), 

ω
rr

⋅n  denotes the dot product of vector nr  and ω
r

, and by the definition of asymptotic scale, 

the gauge functions  )(εϕnr  are ordered by index nr  in such way that the later function in 
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the sequence is always o -function of the previous one. Further, we assume that the 

parameter vector ),,,(= 21 kωωωω K
r

 has the following properties:  (i) 

;<<<=1 21 kωωω K  (ii) the components are linearly independent over the field Q  of 

rational numbers, i.e., ji ωω /  is an irrational number for any kjiji ,1,=,, K≠ . Note that 

it follows from (i) and (ii) that kωω ,,2 K  are irrational numbers. Throughout the paper, the 

symbol ω
r

 refers to some parameter vector satisfying these two properties. 
The aim of this paper is to present the asymptotic behavior of such perturbed 

renewal equations, illustrate the result by applications and carry out numerical studies of the 

applications. The case for 2=k  in (1) has been studied in the previous research (Ni, 

Silvestrov and Malyarenko 2008). Setting 1=k , the asymptotic scale (1) reduces to the 
standard polynomial asymptotic scale, and this case was first investigated in Silvestrov 

(1995). The present paper covers the general case where k  can be any finite positive 
integer, that is, the case with "multivariate" non-polynomial perturbations. Other works on 
nonlinearly perturbed renewal equation with non-polynomial perturbations have been done 
by Englund and Silvestrov (1997) and Englund (2001), where the expansions of defect and 
moments have polynomial and mixed polynomial-exponential forms. 

For a general theory of nonlinearly perturbed renewal equations with applications 
to non-linearly perturbed stochastic systems, we refer to the book by Gyllenberg and 
Silvestrov (2008) and references therein. Note that all expansions in this book are based on 
the standard polynomial asymptotical scale. 

 
2. The Model 
 

Let us consider the following perturbed renewal equation which holds for every 

0≥ε : 

0,),()()(=)(
0

≥−+ ∫ tdsFstxtqtx
t

εεεε  (2) 

where the force function )(tqε  refers to a measurable real-valued function on 

)[0,∞  being bounded on every finite interval. The distribution function )(⋅εF  generating 

this renewal equation has its support on )[0,∞ , is not concentrated at 0  and can be 

improper. It is known that there exists a unique solution which is both measurable and 

bounded on every finite interval solution, )(txε , for equation (2). 

The defect and moments for εF  are defined as 

1.),(=),(1=
0

≥∞− ∫
∞

rdsFsmFf r
r εεεε  (2) 

Assume that the following perturbation conditions hold for )(⋅εF  and )(⋅εq .   

A.  )()( 0 tFtF ⇒ε  as 0→ε ,where )(0 tF  is a proper and non-arithmetic 

distribution function.  

B.   (Cramér type condition)  There exists 0>δ  such that 
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∞∫
∞

→≤
<)(lim

000
dsFe s

ε
δ

ε .  

C.  (a) 0=|)()(|suplimlim 0||000 tqvtquvu −+≤→≤→ εε  a.e. with respect to 

Lebesgue 

     measure on )[0,∞ ;  

      (b) ∞≤≤→≤ <|)(|suplim 000 tqTt εε for every 0≥T ;  

      (c)  0=|)(|suplimlim 1)(00 tqeh t
hrtrh

h
TrT ε

γ
ε +≤≤≥→≤∞→ ∑  for some 0>h , 

0>γ .  

Note that symbol )()( 0 ⋅⇒⋅ FFε  as 0→ε  denotes weak convergence of the 

distribution functions. Notations lim  and lim  are equivalent to limsup and liminf , 

respectively. 

It follows from condition B that the exponential moment of εF , defined as 

0,),(=)(
0

≥∫
∞

ρρφ ε
ρ

ε dsFe s  (2) 

is finite for δρ <  and ε  small enough. 

It is known that, under condition A and B there is a unique nonnegative root, ερ , 

of the following characteristic equation:  

1,=)(=)(
0

dsFe s
ε

ρ
ε ρφ ∫

∞
 (3) 

for ε  small enough and 0→ερ  as 0→ε . 

The following theorem (Silvestrov, 1976, 1978, 1979) serves as the starting point 
for the present study.  
 

THEOREM 1 

Let conditions A, B and C be satisfied. Then for any ∞→≤ εt0  as 0→ε , the 

following asymptotical relation holds 

01

00
0

)(
=)(

}{exp
)(

m

dssq
x

t
tx ∫

∞

∞→
− εε

εε

ρ
   as  0.→ε  (4) 

By condition A we have 0=0ff →ε  as 0→ε  and by Condition B all moments of 

εF  are finite, i.e. 1,< ≥∞ rm rε . Condition A and B also imply that for ε  small enough, 

)(0,0 ∞∈→ rr mmε  as 10, ≥→ rε . The basic idea of the present research is: by 

assuming some appropriate form of asymptotic expansions for εf  and rmε , the 

corresponding asymptotic expansion of ερ  may be obtained, which can be used to improve 

the asymptotic relation (4) to a more explicit form. 
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For some real number ,1≥α  notation ωα r][  is defined as: =][ ωα r  

),,:(max 0
knnn N∈≤⋅⋅

rrrrr αωω  i.e. the last gauge function in (1) that has the order less 

than or equal to α is ωαε
r][
. 

Given α and a specific parameter vector ω
r

, by property (ii) of ω
r

 we know that 

there exists a unique vector nr  such that ωα ω
rr

r ⋅n=][ , we denote this nr  by ),( ωα
rr

f . 

Notation ][α  is used to denote the integer part of number α . Let us also define 

the following two sets: 

},{\)(=)(},,,,:{=)(
1=

11 nnnipnpnppn iij

k

j
kki

rrr
K

rr RRR ′≥≤≤ ∑  (2) 

where kpn 0, N∈
rr

. For example, if ,(2,1)=nr 2=i  then )(ni
rR  refers to the set 

(2,1)}(2,0),{(1,1),  while )(ni
rR′  represents the set (2,0)}{(1,1), . 

All vectors in this paper are k -dimensional (as for ω
r

) row vectors unless stated 

otherwise, and they are represented with lowercase Roman/Greek letters with right-pointing 

arrows above. Symbol 0  is a vector with all components equal to zeros, and ier  refers to i -

th unit vector, i.e. all components are zero except that the i -th component is equal to one. 

We are now in a position to impose the following additional perturbation 

conditions which hold for a given real number 1≥α  and for some given parameter vector 

ω
r

. 
)(α

ω
rP :  (a) )(1=1 ][

,01
ωαω

αωε εε
rrr

rrr obf n
nn

++− ⋅
≤⋅≤∑ , where all coefficients are 

finite.  

          (b) )(= ][
,10

ωαω
αωε εε

rrr
rrr

rn
rnrnrr obmm −⋅

−≤⋅≤
++ ∑ , for ][,1,= αKr , where all 

coefficients are finite.  

Remark 1.  In condition 
)(α

ω
rP , the defect and moments are expanded, up to order 

α , with respect to asymptotic scale (1).  For convenience, notation: ,1=
,00

b rr
mb 0,0

=  is 

also used. 

 
3. The Main Result 

 
The following theorem presents the exponential asymptotics for the solution to the 

perturbed renewal equation described in the previous section. 
 

THEOREM 2 

Let conditions A, B and )(α
ω
rP  be satisfied. Then: 

(i) There exists a unique non-negative solution to characteristic equation (3) for all ε  

that are small enough. Further, the following expansion for ερ holds, 
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),(= ][

1

ωαω

αω
ε εερ

rrr
r

rr
oa n

n
n

+⋅

≤⋅≤
∑  (5) 

where the coefficients can be calculated by the following recurrent formula: 

,= 1,00,11
rrr bba ee −  and in general for αω ≤⋅

rrr nn <1: , 

)),
)!(

)(((1=
)(1)()(

,
)(

21

2=
,1

)(1

,0

,10 r

rj
r

prpipj
ipn

nip

knnn

i
ppn

np
nn j

ababb
b

a
r

r
r

rrrrr
rr

rr

K

rrr
rr

rr ∏∑∑∑∑
′∈∈

−
∈

+++

−
′∈

++−
RDRR

 (6) 

where )( pi
rD  is the set of all nonnegative and integer solutions, 

))(,()( 1 prjpj r
rrrr

r R′∈≡ , for the Diophantine system  

⎪
⎩

⎪
⎨

⎧

×∑
∑

′∈

′∈

pjr

ij

r
pr

r
pr

rr
r

rr

r
rr

=

,=

)(1

)(1

R

R
 (7) 

(ii)  If the coefficients for the defect satisfy 0=,0nbr  for nr  such that βω ≤⋅
rrn  for 

some αβ ≤≤1 , then 0=nar  for nr  such that βω ≤⋅
rrn . 

(iii)  If in addition condition C holds, then for any ∞→≤ εt0  balanced with 

0→ε  in such a way that )[0,][ ∞∈→ βε
ωβ λε t
r

 where ][1,αβ ∈  is a given real number, 

we have the following asymptotical relation:  

)()(}){(exp 0

(1)

][<1

∞→
−⋅

⋅≤
∑ xetxta

an
n

n

βλ

εεε
ω

ωβω

ε
rr

r

rrr
   as  ,0→ε  

where paa r=(1)  with ),(= ωβ
rrr fp .  

Remark 2. The coefficient nar  can be calculated from the recurrent formula (6) if 

nr  satisfies αω ≤⋅≤
rrn1 . It can be directly seen from formula (6) that nar  depends on the 

set of coefficients )}(:{ 1 npa p
rr

r R′∈  which is obviously a subset to }<1:{ npa p
rrr

r ω⋅≤ . 

Also one can observe from (5) and (6) that the value of coefficient nar  does not depend on 

parameter vectorω
r

 and parameterα .  

Remark 3.  For a given ω
r

 and a given α , the expansion of ερ  (5) takes a 

unique form, and so is the sequence of coefficients nar , αω <1 rr
⋅≤ n . Let the terms in 

expansion (5) be ordered in terms of the powers of ε , a natural choice of recursive 

algorithm would be to first calculate the first-by-order coefficient in the expansion then the 
second-by-order coefficient and so on. 

Remark 4.  If the dimension of ω
r

 is one , so that 1=ω
r

, and let alsoα be some 

positive integer greater than one, we have the particular case where the defect and 
moments are expanded with respect to the standard polynomial asymptotic scale, up to and 
including the order α . This case has been studied in Silvestrov (1995) and Gyllenberg and 

Silvestrov (2008). Theorem 2 reduces, in this case, to the corresponding result obtained 
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there. Similarly when ω
r

 has dimension 2 , so that )(1,= ωω
r

 for some irrational 1>ω , 

and let α  be some real number, Theorem 2 reduces, in this case, to the corresponding 

result in Ni, Silvestrov and Malyarenko (2008).  For convenience, we shall call the latter 

case, i.e. the case when ω
r

 has dimension 2 , as the "bivariate" case.  

One can use recurrent formula (6) to calculate manually the coefficients nar  when 

parameter k  and α  are relatively small. For larger values of k  and α , it is better to 

program formula (6). For instance, the corresponding MATLAB routine has been developed 

by the author. The algorithm takes inputsα andω
r

(hence the dimension of ω
r

, k ), then 

determine the sequence of coefficients included in (5) by solving αω ≤⋅
rrn  for integer 

values of nr  and sorting the solutions, nr , in ascending order with respect to the value of 

ω
rr

⋅n . The next step is to determine recursively the coefficients using formula (6). Although 
tedious, most part of this formula are relatively easy to program. Let us only describe briefly 
the algorithm for solving the Diophantine system (7). 

The second equation in system (7) leads to k  equations since the dimension of 

vector rr  and pr  is k . The unknowns are )(, 1 prjr
rr

r R′∈ . Denote |)(|= 1 pq rR′ , i.e. q  is the 

number of vectors in the set )(1 prR′ . System (7) is indeed a Diophantine system of q  

unknowns in 1+k  equations. Let us express this system in the matrix equation bx
rr =A , 

where A  is qk ×+1)(  matrix, i.e. the matrix of coefficients for the system, xr  is the 

unknown column vector with q  entries, and b  is a column vector with 1+k  entries. The 

problem is therefore: determine the set of non-negative integer solutions to bx
rr =A , and 

this can be efficiently solved by using a recursive algorithm. 

 
4. Applications 
 

The results may have many potential applications, for instance, to the analysis of 
nonlinearly perturbed risk processes and processes which are used to describe functioning of 
queueing systems. We present in this section two examples of perturbed classical risk 
processes, with bivariate and multivariate non-polynomial perturbations respectively. 
Theorem 2 is applied to obtain asymptotic behaviour for ruin probabilities and experimental 
numerical studies are carried out to gain insights into the asymptotical results. Since there's a 
duality of classical risk processes with the workload process of a /1/GM  queue, and with the 
dam/storage process, the results also have interpretation in these areas. 

Let us consider the perturbed classical risk-process which describes the time 
evolution of the reserves of an insurance company 

0,,=)(
)(

1=
≥− ∑ tZcttX j

tN

j
εε  (8) 

where 0>c  is the gross risk premium rate; 0),( ≥ttN  is the Poisson claim arrival 

process with rate λ ; the claim sizes ,εjZ )(,1,= tNj K  are i.i.d. nonnegative random 

variables, independent of process ,)(tN that follow a common distribution )(zGε  with a 

finite mean ∞∫
∞

<)(=
0

zdGz εεμ ; 
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It is usually assumed that the moment characteristics of )(zGε  depend on the 

perturbation parameter ε  but converge in some sense to the corresponding characteristics 

of limiting distribution )(0 zG  as 0→ε . These continuity conditions allow us to consider 

the risk process )(tX ε  for 0>ε  as a perturbed version of )(0 tX  for 0=ε . 

The loading rate of claims are characterized by a constant εα  or equivalently by 

the safety loading coefficient εη , defined respectively as 

.1=;=
ε

ε
ε

ε
ε α

αηλμα −
c

 (9) 

Let 0≥u  be the initial reserve of the insurance company, the object of our study is 
the ruin probability, 

0}.<)(inf{P=)(
0

tXuu
t

εε
≥

+Ψ  (9) 

The ruin probability is known to be equal to one if 1≥εα  or equivalently if the 

safety loading 0≤εη . For 1≤εα , )(uεΨ  as a function of initial reserve u , satisfies the 

following perturbed renewal equation (Feller, 1966), 

0,),(~)())(~(1=)(
0

≥−Ψ+−Ψ ∫ udsGsuuGu
u

εεεεεε αα  (10) 

where )(~ uGε  is the integrated tail distribution, i.e. 

.))((11=)(~
0

dssGuG
u

ε
ε

ε μ
−∫  (11) 

Note that 1=εα  is the trivial case since 1)( ≡Ψ uε  is a solution to equation (10) if 

1=εα . 

The distribution function that generates the perturbed renewal equation (10) is 

).(~=)( uGuF εεε α  (11) 

Denote 0α  as εα  for 0=ε .  Let us assume the following condition holds. 

D. 1=0α .      

Note that condition D implies that 1=)(0 uΨ  for all 0≥u . 

Our aim is to obtain the asymptotic behavior of )(uεΨ  as the perturbation 

parameter 0→ε  simultaneously as the initial reserve ∞→u  under some balancing 

condition. Let us use notation εu  to emphasize that u  is changing together with ε . 

 
4.1. Perturbed Risk Process with Bivariate Non-polynomial Perturbations 

We consider the perturbed risk process (8) and assume the following form for the 

limiting claim size distribution )(0 zG , 

⎪⎩

⎪
⎨
⎧

≥

≤
−

−

,1,

,<0,)(1=)(
0

0
0

0

0

Tz

Tz
T

zT
zG ω

ω

 (12) 

where 0T  is a constant parameter and parameter 1>ω  is some irrational number. 
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The first moment 0μ  for )(0 zG  is, 

.
1

=)(= 0
000 +∫

∞

ω
μ TdsGs  (13) 

Let the perturbed claim size distribution )(zGε  for 0≥ε  be given by 

⎪⎩

⎪
⎨
⎧

≥

≤
−

−

,1,

,<0,)(1=)(
Tz

Tz
T

zT
zG ω

ω

ε  (14) 

where T  is a constant parameter and 0TT ≤ . Let us use 00 ≥−≡ TTε  as the 

perturbation parameter. 

In other words, }{P=)( 0 zTZzG j ≤∧ε  where 0jZ follows distribution )(0 zG , 

which can be caused for example by a excess-of-loss reinsurance with retention level T . 

Taking account of (13), the first moment of εε μ),(zG  can be calculated as 

.=)(= 1
1

0

0
00

+
+

∞
−∫ ω

ωεε εμμμ
T

dssG  (15) 

Note that it follows from (12) and (14) that )()( 0 zGzG →ε  as 0→ε  for every 

0≥z . Also 0μμε ≤  and 0μμε →  as 0→ε  due to (15). 

It follows from condition D, (9), (13) and (15) that 1=0ααε ≤  and 1=0ααε →  

as 0→ε , which is the situation considered in a diffusion approximation for ruin 

probabilities. 

Under condition D we have 1=)(0 uΨ . Also we have 1≤εα , hence the ruin 

probability )(uεΨ  satisfies the perturbed renewal equation (10).  

Since for 0>ε  we have 1<εα , the distribution function )(~=)( uGuF εεε α  in 

this case is improper, i.e. defect 0>1=)(1= εεε α−∞− Ff  for 0>ε . Obviously 

0=0ff →ε  as 0→ε . 

It can be shown that the defect εf  takes the following form, 

.1=1=1= 1
1

0

ω
ω

ε
εε ελμα +

+−−
Tc

f  (16) 

By repeatedly applying integration by parts, the r -th moment, 1≥r , of )(uFε  can 

be calculated as: 

ωω
εε ε

ω
ω

ω
++−−−+

+

∞

++
+

⎟⎟
⎠

⎞
⎜⎜
⎝

⎛
−+

+

⋅ ∑
∏∫ 11

0
1

0=
1

2=

0

0 1
11)(

)(

)!(
=)(= kkrk

r

k
r

i

r
r

r T
kk

r

i

Tr
dsFsm . (17) 

Let us define ),,:(max][ 0N∈≤++≡ mnmnmn ξωωξ ω , where 0N  is the set 

of non-negative integers. We now set ωξ 34= +  so that ωξ ω 34=][ + . Using (16), (17), 

the characteristics of )(uFε , namely the defect and moments, can be written down as the 

following perturbation condition. 
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)(ξPω :   (a) ∑
+≤+≤

++ ++−
ωω

ωω
ε εε

341

34
,0, )(1=1

mn

mn
mn obf , where coefficients are 

given in (16);  
 

         (b) ∑
−+≤+≤

−++ ++
rmn

rmn
rmnrr obmm

ωω

ωω
ε εε

341

34
,,0 )(= , for 

]3[4,1,= ω+Kr , where coefficients are given in (17).  

We would like to note that (16), (17) can be rewritten in the form of )(ξPω  for any 

∞<ξ . Note also that the perturbation condition )(ξPω  is a particular case of condition )(α
ω
rP  

for the case )(1,= ωω
r

 and ωξα 34== + . It can also be shown that condition A, B, C 

hold for the perturbed renewal equation (10) with )(zGε  given by (14). Applying Theorem 2 

we obtain the following exponential asymptotic expansion for the ruin probability. 
 

THEOREM 3 

Let the claim distributions )(0 zG  and )(zGε  be given by formulas (12) and (14). Let 

also condition D holds and 0= 0 ≥−TTε  be the perturbation parameter. Then there exists a 

unique non-negative solution, ερ , to the characteristic equation (3) and the following 

asymptotical relation holds, 

),(= 3434
4,3

33
3,3

23
3,2

22
2,2

1
11

ωωωωωω
ε εεεεεερ ++++++ ++++++ oaaaaa  (18) 

where 

.
3)(

2)1)(3(=

,)
4)3)(2(

5
3)(
1(2)(=

,2)1)((=,
3)(

2)(=,2=

53
0

3

4,3

243
0

4

3,3

42
0

3,232
0

3

2,22
0

1,1

+

+

+++

+
++

−

++
+

+
+
++

++
−

+
++

ω

ω

ωωω

ω
ωω

ωω
ω

ω
ωω

ωω
ω

ωω

T
a

T
a

T
a

T
a

T
a

 (18) 

(i)  For any ∞→≤ εu0  in such a way that )[0,][ ∞∈→ βε
ωβ λε u  for some 

    ωβω 22<1 +≤+ , the following asymptotical relation holds,  

{ } .0exp)( 1,1 →−→Ψ ελβεε asau
  

(ii)  For any ∞→≤ εu0  in such a way that )[0,][ ∞∈→ βε
ωβ λε u  for some 

    ωβω 23<22 +≤+ , the following asymptotical relation holds, 

( ){ }
{ } .0exp

)(exp

2,2

1
1,1

→−→
Ψ+

ελ
ε

β

εεε
ω

asa
uua

 

(iii)  For any ∞→≤ εu0  in such a way that )[0,][ ∞∈→ βε
ωβ λε u  for 

ωβω 33<23 +≤+ ,  

      the following asymptotical relation holds,  



  
International Symposium on Stochastic Models  

in Reliability Engineering, Life Sciences and  
Operations Management (SMRLO'10) 

 

 
507 

{ }
{ } .0exp

)()(exp

3,2

22
2,2

1
1,1

→−→
Ψ+ ++

ελ
εε

β

εεε
ωω

asa
uuaa

 

(iv)  For any ∞→≤ εu0  in such a way that )[0,][ ∞∈→ βε
ωβ λε u  for 

ωβω 34<33 +≤+ ,  

     the following asymptotical relation holds,  

{ }
{ } .0exp

)()(exp

3,3

23
3,2

22
2,2

1
1,1

→−→
Ψ++ +++

ελ
εεε

β

εεε
ωωω

asa
uuaaa

 

(v)  For any ∞→≤ εu0  in such a way that )[0,][ ∞∈→ βε
ωβ λε u  for 

ωβ 34= + , the  

     following asymptotical relation holds,  

{ }
{ } .0exp

)()(exp

4,3

33
3,3

23
3,2

22
2,2

1
1,1

→−→
Ψ+++ ++++

ελ
εεεε

β

εεε
ωωωω

asa
uuaaaa

  
Remark 5. This example of perturbed risk process was first introduced in the 

author's earlier paper (Ni, Silvestrov and Malyarenko 2008). Theorem 3 above is an 
extended version of Theorem 3 in the aforementioned paper. The latter theorem gives the 

corresponding result for the perturbation condition )(ξPω for ωξ 23= +  and hence presents 

the expansion of ερ  only up to and including the term of order )( 23 ωε +O . In Theorem 3 

above, we determine two more terms for the expansion of ερ  and consequently obtain two 

additional variants, i.e. statements (iv) and (v), of the exponential asymptotics for the ruin 
probability. The proof of these additional results follows the same line as the proof of 
Theorem 3 in Ni, Silvestrov and Malyarenko (2008). 

  
4.2. Perturbed Risk Process with Multivariate Non-polynomial Perturbations 

Let us suppose that the claim size distribution )(zGε  for the risk process (8) is a 

mixture of exponential distributions of the following form 

,1=)( )(3/
3

)(2/
2

)(1/
1

εδεδεδ
ε

zzz epepepzG −−− −−−  (19) 

where 

,0>=)( i
iii C ωεδεδ − ,32,1,=0,>0,> iCiiδ for ,0≥ε ,1,,0 321 ≤≤ ppp

1=321 ppp ++ , 11 ≡ω , and 1>, 32 ωω  take irrational values such that 32 /ωω  is an 

irrational number. Without loss of generality we assume 32 < ωω , so that we can introduce 

the vector parameter ),(1,= 32 ωωω
r

. 

The perturbation above can be seen as an environmental factor that determines 
claim amounts and acts in a different form for different claim groups. 

Note that if the perturbation parameter 0=ε , )(zGε  reduces to 

.1=)( 3/
3

2/
2

1/
10

δδδ zzz epepepzG −−− −−−  (19) 

The first moment of the perturbed claim size distribution, εμ , takes the form 
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).()()(= 3
333

2
222111

ωω
ε εδεδεδμ CpCpCp −+−+−  (20) 

By (19) and (20), we have )()( 0 zGzG →ε  as 0→ε  for every 0≥z , and 

0μμε ≤  but 0μμε →  as 0→ε . 

Obviously, 1=0ααε ≤  and 1=0ααε →  as 0→ε , so we have again the case 

of diffusion approximation for ruin probabilities. 

Since 1=< 0ααε  for 0>ε , the distribution )(~=)( uGuF εεε α is improper for 

0>ε  but the limiting function )(0 uF  is proper, i.e. the defect 0=1= 0ff →− εε α  as 

0→ε . 

It can be shown that the defect εf  and the r -th moment rmε  for the distribution 

function )(~=)( uGuF εεε α  take the following form: 

,= 3
3

0

32
2

0

2
1

0

1 ωω
ε ε

μ
ε

μ
ε

μ
C

p
CpCpf ++  (21) 

1.],)()(
1

[!= 1
1

1=

3

1=0
0 ≥−⎟⎟

⎠

⎞
⎜⎜
⎝

⎛ +
+ −+

+

∑∑ rC
j

r
prmm ji

i
jr

i

r

j
i

i
rr

ω
ε εδ

μ
 (22) 

Relations (21) and (22) imply that, in this case, the perturbation condition )(α
ω
rP  

holds for any 1≥α . It can also be shown that condition A, B and C hold for the perturbed 

renewal equation (10) with )(zGε  given by (19). 

Instead of reformulating Theorem 2 for this case, we illustrate the asymptotic result 

by a specific example where 3=,2= 32 ωω , i.e. )3,2(1,=ω
r

 and 3=α . In this 

case the following exponential asymptotic expansion for the ruin probability can be obtained 
by applying Theorem 2. 

 
THEOREM 4 

Let the perturbed claim size distributions )(zGε  be given by formula (19) and ε  be 

the perturbation parameter, let also condition D holds. Then :   

(i)  There exists a unique non-negative solution, ερ , of the characteristic equation, 

(3) and the following asymptotical relation holds 

),(

=
33

(3,0,0)
22

(0,2,0)
31

(1,0,1)

21
(1,1,0)

2
(2,0,0)

3
(0,0,1)

2
(0,1,0)(1,0,0)

εεεε

εεεεερε

oaaa

aaaaa

++++

+++++
+

+

 

(23
) 

where (3,0,0)(1,0,0) aa K  can be calculated using recurrent formula (6) with the use of 

formulas (21) and (22), in particular, 

,=,=,=
010

33
(0,0,1)

010

22
(0,1,0)

010

11
(1,0,0) m

Cpa
m
Cpa

m
Cpa

μμμ
 (23) 
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K,
2

)(4= 3
01

2
0

02011
2

1
2
1

(2,0,0) m
mmCpa

μ
δ −

 

(ii)  For any ∞→≤ εu0  in such a way that )[0,][ ∞∈→ βε
ωβ λε u  for some 

3<1 β≤ , the following asymptotical relations holds,  

{ } ,0exp)(}){(exp (1)

][<1
→−→Ψ⋅

⋅≤
∑ ελε βεεε

ω

ωβω

asauua n
n

n

rr
r

rrr
 (24) 

where paa r=(1)  with ),(= ωβ
rrr fp . 

Remark 6.  The expansion for ερ , (23) is expanded only up to order )( 3εO  in the 

example above. If needed, ερ  can be further expanded up to order of )( ][ ωαε
r

O  for any 

real number ∞≤ <1 α .  
Remark 7.  Although the above asymptotic results are derived for specific 

parameter values, i.e. 2=2ω  and 3=3ω , similar results can be easily obtained for 

cases where the parameters 2ω  and 3ω  take other admissible values. Different choices of 

2ω  and 3ω  only lead to different forms of the expansion for ερ .  

Remark 8.  As in Theorem 3, statement (ii) of Theorem 4 leads to several variants 

of asymptotic relation (24) for different cases of the values for β , namely 2<1 β≤ , 

3<2 β≤ , 2<3 β≤ , ..., 3<22 β≤  and finally 3=β . For instance, under the 

the balancing condition described in statement (ii), we have, if 2<1 β≤ , the asymptotic 

relation: 

{ } .0exp)( (1,0,0) →−→Ψ ελβεε asau  (25) 

Similarly if 3<2 β≤  we obtain 

{ } { } ,0exp)()(exp (0,1,0)(1,0,0) →−→Ψ ελε βεεε asauua  (26) 

and following the same pattern, if 2<3 β≤  we obtain 

{ } { } ,0exp)()(exp (0,0,1)
2

(0,1,0)(1,0,0) →−→Ψ+ ελεε βεεε
ω asauuaa  (26) 

and so on. 

 
5. Experimental Study 

 
In Section 5.1, we carry out experimental numerical studies for the example of 

perturbed risk process discussed in Section 4.1. The example introduced in Section 4.2 is 
investigated in Section 5.2. 

 
5.1. Perturbed Risk Process with Bivariate Non-polynomial Perturbations 

The asymptotic formulas given by statements (i) - (v) of Theorem 3 can serve as 

approximation methods for )(uεΨ  for small value of ε  and relatively large values of u . To 

gain insight into the accuracy and other properties of these asymptotic formulas, we 
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compare the corresponding approximations to the value of ruin probability estimated by 
computer simulation since the true value is difficult to compute. 

Let us denote the simulated estimate of )(uεΨ  by )(us
εΨ  with s standing for 

simulation. To obtain )(us
εΨ  we implement the conditional Monte Carlo simulation method, 

i.e. a variance reduced version of the Crude Monte Carlo, via the Pollaczeck-Khinchine 
formula for ruin probabilities. The description of this simulation method can be found in 

Asmussen (2000). The solution to our problem is )(E=)( Zus
εΨ  where Z is the random 

variable generated in Algorithm 1 below. Note that u is the chosen value of the initial 

reserve, T  is the constant parameter of )(zGε  given in (14) and hence the corresponding 

constant in )(~ uGε  defined in (11). 

 
 Algorithm 1 

1.  Generate geometric random variable K , with 
kkKP εε αα )(1=)=( − .   

2.  if 0=K  then 0←Z . 

3.  else if 1=K  then )(~1 uGZ ε−← .      

4.  else  

5.  Generate 11 ,, −KLL K  from distribution )(~
⋅εG .   

6.  let )( 11 −++−← KLLuY L .    

7.  end if 

8.  if 0<Y  then 1←Z . else if TY >  then 0←Z .      

9.  else )(~1 YGZ ε−← .    

10.  end if 
 
The main problem in Algorithm 1 is to simulate the random variable from the 

distribution )(~
⋅εG . We use the inverse method to generate outcomes of this random 

variable, i.e. to generate 

1,0])(1[= 1
1

11
00 ≤≤+−− +++ vvvTTx ωωω ε  (27) 

where v  is a realization of a standard uniform random variable. 

Set the parameters 5)24(=1,=0 +ωT , the simulation experiments have been 

carried out for different combinations of initial capital u  and the perturbation parameter ε , 

with concentration on the cases where the ruin probability is of the magnitude 210− , 310−  

and 510− . For each simulation experiment, we execute the block in Algorithm 1 for 100  

million times, i.e., to generate 100  million replicates of random variable Z . When the ruin 

probability is as small as of magnitude 510− , we increase the number of simulations to 500  

million times. 

Let us denote ,51,=),( Kjuj
εΨ  as the approximated ruin probability via the j -th 

statement in Theorem 3. By inspecting statement  (i) - (v) we note that )(uj
εΨ  represents 
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the approximation where the j -th order expansion of ερ  is used in the corresponding 

asymptotic formula. Let us call )(uj
εΨ  the j -th order approximation. 

The relative errors ,5=,1),,( KjuE j ε  are calculated in the traditional way as  

,
)(

)()(
=),(

u
uu

uE s

sj

j
ε

εεε
Ψ

Ψ−Ψ
 

and they are presented in Table 1. The value of safety loadings, εη , are also given 

in the table. 

 

Table 1.  Relative errors of the approximation by Theorem 3 with 5)24(=1,=0 +ωT  

  
  

 Relative errors ),( εuE j  (%)  ε  

( εη ) u   )(us
εΨ  1E    2E    3E    4E    5E  

 500   0.0487  1.51  0.13  0.19  0.18  0.18 
 800   0.0080  2.42  0.21  0.31  0.29  0.29 0.05 

(0.2%) 
 1600   6.35 

510−×   4.37  -0.10  0.10  0.07  0.07 

 100   0.0743  5.3  0.27  0.71  0.57  0.59 
 200   0.0055  10.4  0.13  1.01  0.74  0.79 0.1 

(0.8%) 
 400  

 3.121 
510−×   

20.3  -1.11  0.64  0.08  0.18 

 50   0.0450  14.6  0.41  2.21  1.32  1.57 
 100   0.0021  29.7  -0.55  3.05  1.27  1.76 0.15 

(2.0%) 
 170   2.69 

510−×   56.1  -0.58  5.62  2.54  3.37 

 30   0.0301  30.6  0.28  5.13  1.87  3.05 
 50   0.0030  52.9  -1.48  6.59  1.13  3.09 0.2 

(3.6%) 
 90   2.86

510−×   111.8  -4.03  10.58  0.59  4.13 

 10   0.0492  65.1  2.54  16.52  2.06  9.75 
 20   0.0026  155.7  -1.36  27.38  -2.28  13.01 0.3 

(8.9%) 
 35   3.08 

510−×   394.0  -6.69  45.95  -8.22  18.37 

 8   0.0290   115.7   4.60   31.22  -0.61  18.73 
 15   0.0014   292.7   1.06   54.59  -8.18  28.15 0.35 

(12.7%) 
 24   2.91 

510−×    747.5   -3.41   90.68   -17.14   41.25 

 

The first impression of Table 1 is ),(1 εuE  is far too large when 0.1≥ε  for all 

chosen values of u . This suggests that the first order approximation )(1 uεΨ  is not adequate 

unless ε  is really small, thus the contribution of the second term in (18) is definitely not 

negligible. For 0.2≤ε , the higher order approximations, namely ,52,=),( Kjuj
εΨ  are 

good, except that the approximation by )(3 uεΨ  does not work so well for 0.2=ε  , which 

may be caused by some special property of the expansion (18). 

As seen from Table 1, if ε  is relatively large, say 0.2≥ε , even higher order 

approximations work poorly. Interestingly, in general approximation by )(2 uεΨ  still seem to 

be applicable. 
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These experiments are done for 0T  normalized to 1, and ω  set to equal to 

5)24( + . Similar experiments have been done for 2=1,=0 ωT , and the general 

impression of the results is the same: first order approximation ought not to be used for 
moderate and large ε ; all approximations get more accurate as ε  gets smaller as expected. 
The quality of approximations seems to depend heavily on ε  but not so much on the values 
of u  in the chosen range. 

It can be shown that in this model of a perturbed risk process, the safety loading εη  

is of the order )( 1 ωε +O . Therefore as shown in Table 1, the approximations are applicable 

only for εη  being very small. This may not be the most interesting case in risk theory. 

However, we would like to note that there's a duality of the classical risk process with the 
virtual waiting time process in a M/G/1 queue, consequently the ruin probability can be 

interpreted as the steady-state limit of the virtual waiting time. The case when εη  is very 

small corresponds to the interesting heavy traffic case in the queuing theory and thus the 
study of this case has its own value. 

Finally, we compare the approximation by )(2 uεΨ  to the classical diffusion 

approximation method (see for example Grandell 2000), 

),)(2(exp=)( εεεε γηβ uuD −Ψ  (28) 

where εε γβ ,  refer to the first and second moment of claim size distribution 

)(zGε , εη  is the safety loading. The results are presented in Table 2, with ),( εuED  refer to 

the relative error of the approximation by (28). 

As seen from Table 2, in this numerical example, approximation by )(2 uεΨ  works 

better. ),( εuED  tends to get larger as ε  get larger and also as u  gets larger. This is the 

case for 0.2>ε  as well (not shown in the table). 
 

5.2. Perturbed Risk Process with Multivariate Non-polynomial Perturbations 

We consider a numerical example for the application in section (4.2). Suppose that 

1=== 321 CCC , 0.3,=0.3,=0.4,= 321 ppp  7=5,=3,= 321 δδδ  in the perturbed 

claim size distribution (19). 

Since the claim distribution )(zGε  is a mixture of three exponential distributions, 

exact formula of ruin probability for this case exists in terms of a matrix-exponential function 
(see for example Asmussen 2000). Let us denote the ruin probability calculated via the exact 

formula by )(ue
εΨ . We then compare it to the approximated ruin probabilities via statement 

(ii) of Theorem 4. Let us denote 81,=),( Kjuj
εΨ  as these approximated ruin probabilities 

with β  chosen in such a way that the j -th order expansion of ερ  is used in (24). For 

example, )(1 uεΨ , call it the first order approximation, is calculated using (25) in Remark 8 

where the parameter β  satisfies 2<1 β≤ , and )(2 uεΨ , i.e. the second order 

approximation, refers to the approximation by (26) and so on. 
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Table 2.  Relative errors of )(uj
εΨ  and )(uD

εΨ  

  ε ( εη ) u  )(us
εΨ   )(%),(2 εuE   )(%),( εuED   

 500   0.0487  0.13   0.26  
 800   0.0080  0.21   0.42  0.05 

(0.2%) 
 1600   6.35 

510−×   -0.10   1.34  

 100   0.0743  0.27   1.03  
 200   0.0055  0.13   2.43  0.1 

(0.8%) 
 400  3.121 

510−×   -1.11   6.12  

 50   0.0450  0.41   2.96  
 100   0.0021  -0.55   7.11  0.15 

(2.0%) 
 170   2.69 

510−×   -0.58   11.47  

 30   0.0301  0.28   6.44  
 50   0.0030  -1.48   12.25  0.2 

(3.6%) 
 90   2.86

510−×   -4.03   22.08  

 

The relative errors ,81,=),,( KjuE j ε , defined as 

,
)(

)()(=),(
u

uuuE e

ej

j
ε

εεε
Ψ

Ψ−Ψ
 (28) 

are calculated for different combinations of ε  and u  and presented in Table 3. All 

calculations are done in MATLAB. Symbol εη  in Table 3 refers to the safety loading 

coefficient. 

As shown in Table 3, the higher order approximations, i.e. 3),( ≥Ψ juj
ε  are 

perfect for ε  small, say 0.05≤ε . For 0.15<0.05 ≤ε , even higher order approximations 

6),( ≥Ψ juj
ε

 should be used. Also it is seen from the table that, for a fixed u  and a fixed 

small ε , the relative errors appear to decrease, when we include more terms from the 

expansion ερ  in the approximation, with the exception that ),(8 εuE  is oftentimes slightly 

larger than ),(7 εuE . 

Figure 1 illustrates how the approximation in general improves as we take 
approximations of higher orders. Approximation )(1 uεΨ  is shown to be a very poor 

approximation and is therefore omitted in the figure. 
 
Table 3.  Relative errors of the approximation by Theorem 4 with 1=== 321 CCC , 

0.3,=0.3,=0.4,= 321 ppp  7=5,=3,= 321 δδδ    

 Relative errors ),( εuE j  (%)  
 ε  

( εη )  u  

  

 )(ue
εΨ  

1E    2E    3E    4E    5E    6E   7E  8E  

17000   0.0499  44        7.1  0.14   0.13  0.12  0.11   0.10  0.11  
33000   0.0030  102      14  0.18   0.16  0.13   0.11   0.11  0.11  0.01 

(0.0009) 
57000   4.31 510−×   237   26   0.23   0.21  0.14  0.11   0.11  0.11 
 3000  0.0481  103   22   0.99   0.96  0.79   0.67   0.63  0.64 
 6000  0.0023   310   50   1.48   1.33  0.99   0.74  0.67  0.69  0.05 

(0.005) 
10000  4.11 510−×    947  95   1.91   1.83 1.26   0.84   0.72  0.76 
 1000   0.0273  258   62  4.65   4.57 3.75   2.88   2.61  2.71 
 1500   0.0046  570   5.93   5.81 4.56   3.26   2.85  3.00 0.15 

(0.020) 
 3000   2.12 510−×   4297  305   9.86   9.61  7.04   4.38  3.57 3.86 

 500   0.0343  320   85   9.34   9.23   7.75   5.95   5.36  5.59  
 800   0.0046  870   162   12.7   12.5   10.04   7.11   6.16  6.53 0.25 

(0.037) 
1500   4.37 510−×   6735   487   20.8   20.4   15.6   9.86   8.05  8.75  
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Figure  1.  Approximation by )(uj

εΨ  for 1000.=0.15;= uε  

 

From Table 3 we note also that, for a fixed 0.05≥ε  and a fixed approximation, if 

u  takes a larger value, the corresponding relative error appears to be larger. This seems to 

be contradictory to the fact that formula (24) holds for ∞→u  and 0→ε  simultaneously. 

However, note that to use formula (24) we should have ∞→u  and 0→ε  balanced so 

that )[0,][ ∞∈→ βε
ωβ λε u  for some 3<1 β≤ . Hence the value of βλ can have a subtle 

effect on the quality of approximation. The experiments suggest a relatively too large βλ  

may not be desirable for a good approximation. For the purpose of illustration, let us 

consider the approximation by )(3 uεΨ  with 0.15=ε  and varying u , of which the values of 

βλ  are given in Table 4: 

Table 4.  The values of βλ  for )(3 uεΨ  with 0.15=ε  and varying u  

ε  u   )(ue
εΨ  (%)),(3 εuE    βλ   

 1000   0.0273   4.65   37.4  
1500 0.0046 5.93 56.1 0.15 
3000 2.12 

510−×  9.86 112.2 

 

We note from Table 4 that when βλ  is as large as 112.2, the approximation is less 

accurate for the cases with smaller values of βλ . To address questions like whether the 

values of βλ  always affect the quality of approximation, and if this is true which value of βλ  

is optimal for the approximation, more comprehensive and extensive numerical experiments 
are required. 
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6. Conclusions and Future Research 
 
We have studied the asymptotic behavior of nonlinearly perturbed equations with 

non-polynomial perturbations of the type )(α
ω
rP  which is a generalized type of the non-

polynomial perturbations treated in the previous research (Ni, Silvestrov, Malyarenko 2008). 
The theoretical results have been applied to examples of nonlinearly perturbed risk 
processes and can have potential applications in various applied probability models.  For the 
proofs of the results we refer to a forthcoming report by Ni (2010). 

This article has dealt with asymptotically proper perturbed renewal equation, i.e. as 

described in condition A, )(0 tF  is assumed to be a proper distribution function. The case of 

asymptotically improper perturbed renewal equation where )(0 tF  can be improper leads to 

a further generalization of the theory and will be studied at the next stage of research. The 
study of asymptotic expansions for renewal limits follows naturally afterwards. 
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