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Abstract: Standard setting plays an important role in educational and psychological testing. 
This paper is focused on standard setting using ‘cluster analysis’ technique. Cluster analysis is a 
statistical procedure for forming homogenous groups of subjects (examinees). It explores the 
process of doing cluster analysis and its types are – K-Means and Hierarchical clustering. In the 
hierarchical cluster analysis, all objects are initially being considered to be a unique cluster. 
The analysis proceeds sequentially by merging clusters together one step at a time until all 
objects are merged into a single cluster. In the K-Means cluster analysis, the number of clusters 
into which the objects which will be portioned is specified initially. The K-means algorithm then 
establishes the centers of each cluster which are represented by a vector of means (called the 
cluster centroid) corresponding to the variables used to cluster subjects. The procedure was 
applied to an achievement test in science. A five cluster solution best separated the examinees 
according to their proficiency skills. The study concludes that cluster analysis has an edge over 
other techniques in regard to reducing subjectivity based on expert ratings of items and 
applicability to performance-based assessments. It does not remove subjectivity from the 
standard setting process, but does provide subject-matter experts and test developers with a 
quantitative method for determining different groups of test takers. 
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1. Introduction 
 

Standard setting is an important and perennial problem in educational and 
psychological testing. It plays a significant role in teaching profession in selecting the most 
competent examinees for various purposes. It has also become very important because of 
the legal and political implications of having crude selection criteria based on non objective 
standard setting. Over the years many methods and techniques have been evolved for 
standard setting. Many of these techniques share some common features with each other; 
others differ to a large or small extent. One of such techniques for developing standard 
setting in science is ‘cluster analysis’. This technique is aimed at clustering examinees with 
similar profiles such that the task of standard setting becomes easier. This technique 
provides standard setters with options and perspectives than other techniques do not. It is 
more embedded in statistical procedures than most other techniques which make use of 
subjective judgments. Though cluster analysis is a technique that can be reinforced by using 
external validity criteria, it is also possible to execute the full process using statistical 
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procedures alone without resorting to external subjective opinion. This makes it a powerful 
tool for standard setters.  

Cluster analysis, unlike many other methods, also provides standard setters with 
multiple possibilities for standard setting and can give additional insights into the 
multidimensional competencies of examinees. Though cluster analysis may be used on its 
own for the purpose of standard setting it is perhaps better suited to enter the realm of 
standard setting as a supporting tool for other standard setting methods, like the Reckase 
charts1 and in the future it may be better to expand efforts on consolidating such a position 
for it. Availability of methods like Cluster Analysis and Reckase Charts as supporting tools 
can give different perspectives into test taker performance which can assist in strengthening 
the process of standard setting. Thus the cluster analysis technique is a promising research 
avenue that can elevate the science of standard setting to the next level, either on its own or 
at-least in conjunction with other methods as a valuable support tool as discussed in this 
paper. 
 
1.1. Concept of Cluster Analysis 

Cluster Analysis is a statistical procedure for forming groups of similar objects. It 
finds a broad range of application in many fields apart from standard setting exercises in the 
field of education. For example, in medicine, cluster analysis is used to identify diseases and 
their stages: by examining patients who are diagnosed as depressed, one can find if there 
are several distinct sub-groups of patients with different types of depression. In marketing, 
cluster analysis is used to identify people with similar buying habits; by examining these 
characteristics one may be able to target future marketing strategies more efficiently. In the 
field of education cluster analysis is a relatively new technique for standards setting 
purposes. It is currently still being developed and seems to hold a lot of promise for the 
future.  

Traditional standard setting-setting methods have been criticized due to reliance on 
untested subjective judgment, lack of demonstrated reliability and lack of external validation. 
Cluster Analysis builds on the strengths of other standard setting methods and addresses 
some of their weaknesses. In particular the method includes replication and the use of 
external evidence of validity while relying less on subjective judgment. 
 
1.2. Current Standard Setting Methods 

Jaeger (1989; 1995) classified standard setting methods as either test centered or 
examinee centered. Test centered methods involve the use of expert panelists to scrutinize 
items comprising the test and to make judgments regarding the probable levels of 
performance that borderline or marginally proficient test takers will exhibit on the items. The 
most popular test-centered method is the Angoff method and its modifications. For items 
that are scored dichotomously, the panelists in an Angoff study estimates the probability that 
a borderline examinee will answer an item correctly. For items scored polytomously, the 
panelists estimate the expected score of a borderline candidate on the item. Cutscores are 
set on the test score scale by summing the item probabilities or expected item scores for 
each judge and then averaging these sums across panelists or taking the median score. 
There are two primary criticisms of test-centered methods for standard setting. First, the 
cognitive task presented to the panelists is complex, and it is difficult to provide evidence that 
they understand the task or complete it as desired (Angoff, 1988; Cizek, 1996). Part of this 
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difficulty results from the notion of a borderline test taker; it may be difficult for panelists to 
clearly envision the knowledge and skills characterizing this test taker and to compare these 
levels of knowledge and skills to those required for success on numerous test items. A 
second criticism of test-centered procedures is that the resulting passing standard may 
change if a different group of panelists is used (Angoff, 1988; Cizek, 2001). Though some 
change is acceptable because of the element of subjectivity and the fact that there are no 
golden standards, it is a good exercise to limit the subjective element in the standard setting 
process. Significant discrepancies due to subjective opinions of different panelists can be a 
serious threat to the defensibility of cut-scores. 

Examinee-centered standard-setting methods use subject-matter experts to 
evaluate examinees rather than items. One such approach, the borderline group method, 
uses experts to select a group of test takers who are considered marginally proficient (i.e., 
who possess just enough knowledge and skills to be classified into a particular category). The 
median test score for this borderline group is then used as the relevant cut-score. To 
implement the borderline group method, the borderline test takers must be selected using 
criteria other than test performance. This requirement poses problems because there is no 
direct way to determine borderline proficiency. Thus, the same types of false-positive and 
false-negative classification errors associated with standard setting in general apply to the 
assignment of test takers to the borderline group. In addition, the cut-scores derived in this 
fashion would fluctuate directly with the (likely to be unknown) sampling variability over 
potential borderline groups. 

Another popular examinee-centered method is the contrasting groups’ method. In 
this method, experts select two groups of test takers, one considered to be above the 
relevant standard and one considered to be below this standard. The test scores that result in 
the fewest false-positive (e.g. passing a below-standard student) and false-negative (e.g. 
failing an above-standard student) misclassifications are selected as the passing score. 
Though it is easier to identify above standard and below standard groups than to identify 
borderline groups, in many cases identification of contrasting groups is not easy to validate. 
The resources required for identifying and testing above and below standard students are 
much larger compared with the borderline method. Overall, both methods share many 
short-comings like unknown sampling variability across examinee groups, classification 
errors in assigning examinees to groups, and practical constraints. 

A review of traditional standard-setting methods reveals that, although each 
method has theoretical appeal, all are subject to significant limitations. Several researchers 
have suggested guidelines or standards for evaluating standard-setting studies (Kane, 
1994b; Van der Linden, 1994; Cizek, 1996) Furthermore, it suggests that standard-setting 
studies can be improved by: a) including replications of the procedure to evaluate the 
consistency of the resulting standards; b) incorporating validity checks on the resulting 
standard (e.g. convergent validity with external criteria); and c) using more than one 
standard-setting method. 

 
1.3. Process of Cluster Analysis 

The standard setting problem is essentially a classification problem (Sireci, 1995). 
When standards are set on a test, the purpose is to classify each test taker into one or more 
groups, such that test takers with abilities close to each other should be separated from 
those test takers with abilities that are different such that all test takers can be classified into 
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categories or groups with similar ability levels. Cluster analysis does exactly that, i.e. groups 
test takers into homogeneous clusters with respect to the proficiency measured. Each cluster 
is comprised examinees that are highly similar in proficiency. These clusters can then be 
ordered in a manner congruent with the groupings defined by the standard-setting problem. 

Cluster analysis can force discrete decisions on a continuous scale. When cut-scores 
are used to classify test takers into one or more groups, score differences among examinees 
within each group are typically inconsequential. When standards are set on tests, the 
fundamental scaling problem is not how to best order examinees along a continuous scale 
but how to best partition test takers into the desired number of (discrete) groups motivated 
by the testing purpose. However the strength of cluster analysis can also be its shortcoming. 
The reason is that clustering procedures cluster the data regardless of whether truly different 
groups of examinees are present or not. Secondly, because it focuses on analysis of test 
response data, no standards can be set higher or lower than the test takers actually perform. 
The procedure derives standards based on what specific groups of test takers have done, 
rather than according to what they should have done. Although this limitation is serious 
theoretically; it is unlikely that a test would be constructed so far above or below examinee 
performance levels that no test takers would exhibit expected standards of performance. In 
this regard, we would like to quote some remarks of researchers who have analyzed cluster 
analysis results: 

We applied the procedure to a state-wide mathematics proficiency test .The standards 
developed from cluster analysis were compared with those established at the local level 
and with those derived from a  more traditional borderline and contrasting groups 
analysis. We observed relative congruence across the local cut score and those derived 
using cluster analysis, and we observed similar correlations among the resulting 
proficiency groupings and course grades. The results of the more traditional borderline 
and contrasting groups analysis were less favorable. We conclude that cluster analysis 
appears useful for helping set standards on educational tests (Sireci, 1999). 

 

1.4. Types of Cluster Analysis 
There are two sorts of cluster analysis that can be used to form clusters. The first is 

called hierarchical cluster analysis and the second is called the K-Means cluster analysis. In 
hierarchical cluster analysis, all objects are initially being considered to be unique clusters. 
The analysis proceeds sequentially by merging clusters together one step at a time until all 
objects are merged into a single cluster. A “N-cluster” solution is, however of no practical 
use. The work for the standard setter is to determine the cluster solution in between these 
two extremes at which truly different clusters are merged together. The cluster solution 
preceding that point represents the best clustering of the data. The standard setter can make 
use of both internal and external criteria to help determine the optimal clustering solution. A 
severe limitation of this form of clustering is that once test takers are merged into a cluster, 
they are stuck for the remainder of the analysis, even if a rearrangement of test takers across 
clusters may improve the solution. Also this method is not suitable for large data sets due to 
the extremely large number of within and cross cluster comparisons that need to be made at 
each stage of analysis. However, in most educational standard setting exercises the goal is 
not to uncover the “true” cluster structure of the data but to identify the optimal partitioning 
of the examinee population that best corresponds to a stated number of groupings. Thus 
when the number of clusters in which examinees are to be partitioned is known at the start 
as in most educational instances the K-means clustering can be used. However, experienced 
examiners can use the hierarchical clustering as a preliminary to K-means clustering to have 
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an estimate of how many real clusters there are that may then be specified in the K-means 
analysis. 

In hierarchical clustering, clusters are formed by grouping cases into bigger and 
bigger clusters until all clusters are members of a single cluster. Before the analysis begins 
all cases are considered separate clusters: there are as many clusters as there are cases. At 
the first step, two of the cases are combined into a single cluster. At the second step either a 
third case is added to the existing cluster of two cases or two other cases are merged into a 
new cluster. At every step, either individual cases are added to the existing cluster or two 
new cases are merger into a new cluster. However once a cluster is formed it cannot be split. 
There are many criteria for deciding which cases or clusters should be combined at each 
step. A common method is the single linkage method; the first two cases combined are those 
that have the smallest distance between them. The distance between the new cluster and 
individual cases is then computed as the minimum distance between an individual case and 
a case in the cluster. The distance between cases that have not been joined do not change. 
At every step, the distance between two clusters is the distance between their two closest 
points. Another commonly used technique is called the complete linkage or the furthest 
neighbor technique. In this method, the distance between two clusters is calculated as the 
distance between their two furthest points. Yet another method is the average linkage 
between groups method, often called UPGMA which defines the distance between two 
clusters as the average of the distances between all pairs of cases in which one member of 
the pair is from each of the clusters. This differs from the other linkage methods in that it 
uses information about all pairs of distances, not just nearest or the furthest. Another 
method is the centroid method which calculates the distance between two clusters as the 
distances between their sums for all of the variables. In the centroid method, the centroid of 
a merged cluster is a weighted combination of the centroids of the two individual clusters, 
where the weights are proportional to the size of the clusters. In the median method the two 
clusters being combined are weighted equally in the computation of a centroid, regardless of 
the number of cases in each. This allows small groups to have equal effect on the 
characterization of larger clusters into which they are merged. When similarity measures are 
used, the criterion for combining is reversed, i.e. the clusters with large similarity based 
measures are merged. 

Once the distance matrix between all cases and clusters has been calculated the 
actual formation of clusters commences which can be seen on an icicle plot or a dendogram. 
Both are graphical representations of the output. Commonly an icicle plot is used. An icicle 
plot is a graphical representation in which the clustering steps are shown on the vertical axis 
against the cases being clustered on the horizontal axis. The number of clustering steps is 
equal to the number of cases and at each step one case or cluster is combined with another 
case or cluster. Thus in step 1, there are as many clusters as cases and at every step the 
number of individual cases reduces by 1 until in the last step all cases have been merged 
into one cluster. The challenge for the examiner is to identify how many real clusters are 
there based on the results of the hierarchical analysis shown on the icicle plot or the 
dendogram etc.  

In K-means clustering, the number of clusters into which the objects which will be 
portioned is specified initially .The K-means algorithm then establishes the centers of each 
cluster which are represented by a vector of means (called the cluster centroid) 
corresponding to the variables used to cluster test takers. For example, if test takers are 
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being clustered based on their performance on four different sections of a test, the four 
means on each test section determine the centroid of a cluster, where the means are 
calculated using only those test takers in that cluster. The number of means constituting each 
centroid is equal to the number of variable used to cluster the objects. The number is 
denoted by K, hence the name K-means clustering. This type of scaling has two obvious 
differences from traditional psychometric scaling. First, the distance among test takers is not 
determined from a single mean but rather from a vector of means. Second, instead of test 
takers being placed on a continuous scale, they are placed into one of a discrete number of 
clusters. These clusters can be used to inform the standard-setting process by relating the 
examinee clusters to the proficiency groupings invoked by the standard setting and test 
development processes. 

The typical K-means algorithm begins by searching through the data to find the Q 
test takers that are most different from one another with respect to the clustering variables 
e.g. sub-scores on the test, where Q represents the number of clusters specified in advance 
by the researcher. At this point, the K scores for these test takers are used as cluster 
centroids. 

The K-means algorithm is iterative: each test taker is assigned to a cluster by 
computing the distance between the test taker and each cluster centroid and assigned to the 
cluster whose centroid it is closest to. Once all test takers have been assigned to the initial 
clusters, the cluster means are recomputed as an average of all cluster members and the 
clustering exercise is repeated. Some test takers are placed in a different cluster after every 
iteration. The iterations carry on until there is no test-taker movement across clusters. At this 
point the clusters are said to have stabilized and iterations finish. The resulting clusters are 
the final clusters; their membership represents the result of the clustering exercise. 

 
1.5. Basic Steps in Cluster Analysis 

Three main decisions need to be made in order to perform a cluster analysis on a 
set of data. The first is the selection of variables. This is a very crucial step. If important 
variables are excluded, poor or misleading findings may result. The variables chosen should 
be such that they cover the whole range of important factors that cause similarities or dis-
similarities between the items. There are at-least three options for selecting the variables to 
be used for clustering the test takers: 1) use all individual items comprising the test, or 2) use 
orthogonal factor scores obtained from item level factor analysis, or 3) use sub scores 
derived from items comprising the major area of the test. The second decision is to look into 
‘how alike are the cases’? In cluster analysis, items are clustered on the basis of their 
nearness or closeness to each other. The nearness or closeness is measured in terms of their 
distance from each other. A commonly used index for distance between items is the either 
the Euclidean distance or squared Euclidean distance, which is the sum of the squared 
differences over all of the variables.  

Euclidean distance (x,y) = { i (xi - yi)
2 }½  

Squared Euclidean distance (x,y) = i (xi - yi)
2 

 
The third decision is regarding the criteria for combining clusters. There are many 

criteria for deciding which clusters or cases should be combined. All criteria are based on a 
matrix of either distances or similarities between pairs of cases. Often it is sum of Euclidean 
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distances of the items from the vector of means of the clusters (centroids) which determine 
the placement of an item in any cluster. 

 
2. Methodology  
 

In order to render a judgment on whether cluster analysis should be used or not, 
we first intended to carry out a practical test of cluster analysis on a set of pre-marked data 
in order to discuss the results of cluster analysis in light of real evidence. Unfortunately, as 
we were unable to get hold of real score cards where grades of test takers were listed next to 
their test marks. It would have been interesting to compare the grades suggested by cluster 
analysis with the actual grades of the test takers. Nevertheless we would like to demonstrate 
the results of a cluster analysis carried out on a set of non-graded data and explain the 
result of the clustering exercise and relevant statistical information. 
 
2.1. Data  

We have done cluster analysis on the data set which consisted of 60 dichotomous 
items marked 1 or 0 and two polytomous items. The sample size for this study was 3000.  
 
2.2. Defining Variables 

The first step in the analysis was to define the variables. Given the large number of 
items comprising the test and the unknown possibility of inter-correlation among the content 
areas, we decided to use the method based on content areas sub-scores. Sub-scores for 
each of the content areas defined in the test were used as the input variables for cluster 
analysis. 

On the basis of the test data available, it seemed best to partition the test into five 
content areas. The two polytomous items were left as they were but we decided to group the 
60 dichotomous items into three groups of 20 items each as the data file suggested that 
there test content consisting of the dichotomous part consisted of three different sort of  test 
areas of 20 questions each. The sub-scores for students in the dichotomous area were 
computed by summing their item scores within each content area. So we ended up with five 
variables: three for the 3 sub-sections of the dichotomous part and two for the 2 polytomous 
items. The next step was to decide if we wanted to standardize the content area sub scores 
prior to clustering to account for differences in the raw score scales due to any differences in 
the number of items in the content area .The number of items in each content area of the 
dichotomous section were equal i.e. 20 but the raw scores scale in the 2 polytomous items 
were lower. They were marked on a scale of 10 which was half of the scale in other sub-
categories i.e. 20. For analysis we assumed that each content area was equally important 
and was supposed to have an equal bearing on the final grade. Thus it was needed to 
rescale the content area sub scores and bring them at par with each other so that they have 
an equal effect on the measurement of distances during cluster formation. It was decided to 
transform the polytomous items scale by doubling all the item scores in the polytomous 
content area to bring it at par with the dichotomous content areas scale. Thus each content 
area was now represented on a scale of 1 to 20.  

The plan was: a) to perform a Hierarchical Cluster Analysis on the data file; b) to 
perform a K-means Analysis on the data file; and c) compare results of a K-Means and 
Hierarchical Analysis and suggest ways for improvement. 
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3. Discussion of Results 
 
3.1. Hierarchical Analysis 

Hierarchical cluster analysis was performed on the data set. The analysis suggested 
that a minimum of five clusters should be used for grouping the examinees. A large 
difference was found in the ‘coefficients’ column in the attached agglomeration schedule 
between a four cluster solution and a five cluster solution. The column labeled ‘co-efficients’ 
represents the distance between two combining clusters. By examining these values we got 
an idea about how unlike the clusters being combined are: small co-efficients indicate that 
fairly homogenous clusters are being merged while large co-effecients indicate that clusters 
containing quite dissimilar members are being combined. These coefficients can be used as 
guidance in deciding how many clusters are needed to represent the data. It is best to stop 
further clustering as soon as the increase between two adjacent steps becomes large. In our 
case, there was a significant increase of around 34 between the five cluster solution steps.  
 
3.2. K-Means Analysis 
The researchers decided to select a number of clusters suggested by the hierarchical cluster 
analysis which suggested that at-least 5 different clusters should be there. Thus all test takers 
in the K-means analysis were grouped in each of the 5 levels which they are closest to. 

The cluster centroids for each cluster were determined by the K-means algorithm. It 
selected the N number of students (where N is the number of specified clusters) whose 
scores were most different from each other. After that using the Euclidean distance formula, 
the K-means algorithm placed the rest of the students in their respective clusters after 
calculating their distances from the K-means centroids. The process was iterative and carried 
on until there was no shifting of test takers across clusters, i.e. stability was achieved. For the 
given data set in the SPSS file and the number of clusters specified as 5, the results of the K-
means clustering can be seen in the SPSS output file shown in Table I. 
 
Table I. Initial Cluster Centers 

                                        Cluster 
  1 2 3 4 5 
VAR0001S 12.00 16.00 4.00 4.00 12.00 
VAR0002S 12.00 14.00 2.00 2.00 4.00 
VAR00003 13.00 15.00 16.00 5.00 4.00 
VAR00004 6.00 20.00 19.00 5.00 14.00 
VAR00005 14.00 19.00 14.00 4.00 10.00 
 
Table II. Iteration History  
Iteration Change in Cluster Centers 

 1 2 3 4 5 
1 6.942 7.296 6.462 5.910 5.605 
2 .807 1.139 .780 1.691 .570 
3 .371 .000 .209 .476 .834 
4 .172 .199 .306 .313 .594 
5 .395 .237 .000 .200 .187 
6 .202 .176 .000 .294 .419 
7 .138 .000 .000 .172 .000 
8 .122 .000 .000 .202 .142 
9 .120 .000 .000 .000 .129 
10 .000 .000 .000 .000 .000 
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Tables I-IV represent the output of a K-Means clustering exercise for the data set 

specified before. The numbers of clusters specified were five. Table I shows the initial cluster 
centers selected by the K-Means algorithm. Table II shows the iteration history from which it 
can be seen that after 10 iterations the all clusters were stabilized into the final form. A 
convergence achieved due to no or small change in cluster centers. The maximum absolute 
coordinate change for any cluster is .000. The current iteration is 10. The minimum distance 
between initial centers is 13.638.  

 
Table III. Final Cluster Centers 

 Cluster 

 1 2 3 4 5 
VAR0001S 9.16 13.28 7.53 6.28 11.19 
VAR0002S 5.96 7.54 3.84 4.61 5.43 
VAR00003 12.33 15.72 14.39 7.06 9.55 
VAR00004 10.29 16.33 15.39 9.36 14.38 
VAR00005 12.93 17.44 16.34 8.94 12.29 

 
Table III shows the final cluster centers and Table IV shows the distance between the 

final cluster centers. Table V shows the cluster membership. As can be seen from the table 
the cluster membership is fairly even i.e. the examinees are fairly evenly spread across the 
five clusters, which is a desirable feature of an exam.  
 
Table IV. Distance between Final Cluster Centers 

Cluster 1 2 3 4 5 
1  9.370 7.004 7.397 5.417 
2 9.370  7.115 15.918 8.788 
3 7.004 7.115  12.130 7.545 
4 7.397 15.918 12.130  8.208 
5 5.417 8.788 7.545 8.208  

 
Table V. Number of Cases in each Cluster 

Cluster 1 
2 

45.000 
39.000 

          3 38.000 
  4 36.000 
  5 42.000 

Valid 200.000 
Missing .000 

Clusters can now be ordered into a hierarchal order by content experts if certain 

content areas are to be given priority over others or simply by summing the means of each 

final cluster centroid and then placing them in ascending order according to their net total 

scores with the highest number representing the highest cluster. After the clusters have been 
aligned in a hierarchical order, the cut scores can then be set. One way could be to set the 

mean scores of clusters, i.e. cluster centroids as the cut-off scores. Another way could be to 

identify the overlapping regions between clusters and then take the mean score of the 

overlapping regions to be the cut scores. Yet another way that could better determine the 
middle point of the overlapping region would be to take the median score of the overlapping 

region as the cut-score. The median method reduces the effects of any large variances in test 
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scores of individual test takers on the whole group of test takers in the region under study. 
With this particular method borderline students can be better identified. Border-line students 

would be those who lie in the overlapping regions and would barely pass or fail depending 

upon their position with respect to the mean score of the over lapping region. It would be 
interesting to see how much variance exists between taking the median cluster scores or 

median of overlapping regions as the cut scores?  
It is also possible to carry out other statistical procedures on the cluster items to 

determine the variance of variables within and across different clusters. Using this, we can 
observe how student response to certain item sets i.e. the variables varies across clusters. A 

high ratio of inter-cluster vs. intra-cluster would mean the variable varying significantly 

across clusters. This can give an insight into how clusters differ from each other. To do this a 

one way ANOVA is done on the data set as shown in the table VI.  
 

Table VI. Inter-cluster and Intra-cluster differences through ANOVA 

 

Cluster Error 

F Sig. 
Mean 

Square df 
Mean 

Square df 
VAR0001S 301.075 4 5.810 195 51.819 .000 
VAR0002S 76.121 4 6.418 195 11.861 .000 
VAR00003 472.557 4 5.576 195 84.752 .000 
VAR00004 383.855 4 5.288 195 72.587 .000 
VAR00005 433.098 4 4.294 195 100.852 .000 

 
A high value of F ratio between and within cluster and a low significance value 

implies that the variables vary significantly across clusters. As can be seen from Table VI, all 
variables vary across the clusters, with variable 2 varying the least and variable 5 varying the 
most. 
 
3.3. Analysis of Hierarchical vs. K-Means Clustering Results 

The comparative analysis if Hierarchical and K-Means showed that the results of a 
hierarchical cluster analysis for a 5 cluster solution compared with a K-means clustering 
solution for 5 clusters. The numbers below represent the case membership for 5 hierarchical 
clusters. Those numbers highlighted in bold represent those members whose cluster has 
changed in a subsequent K-means analysis. Those which are not highlighted represent those 
cases which remain in the same cluster in both hierarchical and K-means analysis. 
 
Membership of Cluster 1:  
1,2,3,4,5,6,8,9,11,14,15,16,18,19,20,22,23,24,26,27,28,29,30,33,36,37,38,39,41,42,43
,44,47,48,51,52,53,54,60,66,67,71,72,73,75,76,79,80,82,85,89,92,93,97,99,102,103,1
05,106,108,112,113,114,115,116,121,122,123,125,128,130,131,132,133,136,138,145,
147,154,155,156,158,159,160,161,167,169,172,174,177,178,180,184,185,187,188,1
92,194,196,197,199,200. 
Remarks: Total members in hierarchical solution:  102. 
                Total number of members in K-means solution: 45 
                Number of common members: 36 
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Membership Cluster 2: 
7,10,12,13,17,21,32,34,35,40,45,46,49,50,55,56,58,59,61,62,63,64,65,69,74,78,83,84,

86,90,91,95,96,98,100,101,104,107,111,117,118,119,120,124,126,127,129,134,135,1

37,139,142,143,144,146,148,150,152,153,162,163,164,165,166,168,170,171,173,175
,176,179,181,182,186,189,190,191,195,198. 

Remarks: Total members in hierarchical solution: 79 

                Total number of members in K-means solution: 39 

                Number of common members: 34 

 
Membership cluster 3: 
25,31,57,68,70,87,140,151,193.(all cases have become members of cluster 4 of K-means 

) 

Remarks: Total members in hierarchical solution: 9 

                Total number of members in K-means solution: 38 
                Number of common members: 0 

 
Membership Cluster 4: 
77,81,94,110,141,183. 

Remarks: Total members in hierarchical solution: 6 
                Total number of members in K-means solution: 36 

                Number of common members: 0 

 
Membership Cluster 5: 
109,149. (Both cases have become members of cluster 2 in K-Means) 

Remarks: Total members in hierarchical solution: 2 

                Total number of members in K-means solution: 42 

                Number of common members: 0 
 

Overall Comparison between Hierarchical and K-Means: 
Total number of cases in test = 200. 

Number of cases falling in common clusters = 45 +39 = 84 
Number of cases falling in different clusters = 200-84= 116. 

Thus more than 50% of the cases in our test are apportioned into unlike clusters 

when put through a Hierarchical and K-means analysis subsequently. This suggests that 

there are significant discrepancies between the results of a K-means and Hierarchical 
analysis, even when the number of clusters for a K-means analysis is chosen after looking at 

the results of an initial Hierarchical analysis as explained before. Thus there still exists the 

need to find ways to bring the results of a Hierarchical analysis closer to a K-means analysis 

to give more legitimacy to the cluster analysis technique as a whole. One way could be to do 
a K-means clustering after every step in a Hierarchical cluster analysis. This way it would be 

possible to transfer cases across clusters if the need arises and the difference between a K-

means outcome and a hierarchical outcome ought to be reduced. However this would 
require a more complex clustering algorithm which is not available for the time being.  
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4. Conclusions 
 

There is no perfect method for setting standards on educational tests. However, the 
cluster analysis procedure can provide additional information that can be useful for helping 
set standards. If test data are available, cluster analysis can be used to help select potential 
borderline, proficient, below proficient, and other groups of examinees that are typically 
selected using only expert judgment. Thus, the performance of examinees in specific clusters 
can be compared to those identified using subjective judgment only. Thus, such analyses 
could be valuable in helping evaluate the results of both test-centered and (other) examinee-
centered methods. 

Though the clustering approach does not remove subjectivity from the standard-
setting process, it does provide subject-matter experts and test developers with a quantitative 
method for determining different groups of test takers. A potentially desirable feature of the 
cluster analysis approach is that it provides different options for setting cut-scores. For 
example, the interval of overlap between examinees in adjacent clusters could be used to 
select a cut-score interval rather than a specific cut-score. Such an interval provides flexibility 
to policymakers who must consider politics, resources, and other factors when deciding 
where to set a cut-score. Similarly, comparing cut-scores resulting from cluster-defined 
contrasting and borderline groups allows for the evaluation of competing cut-scores. Thus, 
clustering procedures can provide a set of potential cut-scores, the elements of which can be 
further evaluated by content experts, psychometricians, and other relevant constituencies 
who may inform policy decisions. 

An attractive feature of the clustering approach is the absence of a 
unidimensionality requirement. An interesting observation by Sireci (1995) is that by 
clustering examinees, groups of test takers with relative strengths and weaknesses across the 
different content areas may be observed, even when factor analysis of the test data indicates 
the test is measuring a unidimensional construct. Thus, cluster or factor analysis of 
examinees rather than of items may provide new insights regarding test dimensionality. 

However there are two areas where attention will have to be given for the sake of 
validity of cluster analysis. These are: a) evaluation of the stability of the cluster solution 
across samples, and b) external validation of the solutions. These two evaluations are 
necessary to ensure the cluster solutions are stable and meaningful rather than artifactual. 
Future applications with larger sample sizes should consider replicating the analyses over 
several samples. For instance one way could be to use cross tabulation, in which the 
available data is divided into two sets and a clustering model is evolved that is compatible 
with the score distributions in the first set and then that very same particular clustering 
model is applied to the other data set to see if it also fits that nicely.  

Future research should also explore other methods for deriving cut-scores from 
cluster analysis solutions. For example, given a score interval that seems to best separate 
clusters differing in proficiency, the score within this interval associated with the greatest test 
information (i.e., lowest conditional standard error of measurement) may be chosen as the 
cut-score. Thus, clustering approaches should be combined with emerging approaches for 
scaling and setting standards on educational tests to produce optimal results. In addition, the 
generalizability of the clustering approach needs to be further investigated with different 
types of tests and score distributions. 
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1 Whereas the Reckase charts provide information about the probability of an examine with a certain test mark 
scoring correctly on a certain item in the test, cluster analysis groups alike students. 
 


