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Abstract:  
Item bias or differential item functioning (DIF) has an important impact on the fairness of 
psychological and educational testing. In this paper, DIF is seen as a lack of fit to an item 
response (IRT) model. Inferences about the presence and importance of DIF require a process 
of so-called test purification where items with DIF are identified using statistical tests and DIF is 
modeled using group-specific item parameters. In the present study, DIF is identified using 
item-oriented Lagrange multiplier statistics. The first problem addressed is that the dependence 
of these statistics might cause problems in the presence of a relatively large number DIF items. 
A stepwise procedure is proposed where DIF items are identified one or two at a time. 
Simulation studies are presented to illustrate the power and Type I error rate of the procedure. 
The second problem pertains to the importance of DIF, i.e., the effect size, and related 
problem of defining a stopping rule for the searching procedure for DIF. The estimate of the 
difference between the means and variances of the ability distributions of the studied groups of 
respondents is used as an effect size and the purification procedure is stopped when the 
change in this effect size becomes negligible. 
 
Key words: Differential Item Functioning; Effect Size; Item Response Theory; Model Fit; 
Polytomous Items 
 

INTRODUCTION 
 

Differential item functioning (DIF) occurs when respondents with the same ability but 
from different groups (say, gender or ethnicity groups) have a different response 
probabilities on an item of a test or questionnaire (Embretson & Reise, 2000). Several 
statistical DIF detection methods have emerged in the last three decades (Camilli, 1992; 
Dorans & Kulick 1986; Finch, 2005; Holland & Thayer, 1988; Kelderman & Macready, 1990; 
Lord, 1980; Muthén, 1988; Shealy & Stout, 1993; Swaminathan & Rogers, 1990; Thissen, 
Steinberg, & Wainer, 1988; Raju, 1988; Roussos & Stout, 1996). During this period many 
researchers have reviewed various DIF detection methods (e.g., Camilli & Shepard, 1994; 
Holland & Wainer, 1993; Millsap & Everson, 1993; Penfield & Camilli, 2007; Roussos & 
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Stout, 2004). Most of the techniques proposed for the detection of DIF have been based on 
the evaluation of differences in response probabilities between groups conditional on some 
measure of ability. We can classify these techniques under two general categories: the first 
category is where a manifest score, such as the number-correct score, is taken as a proxy for 
ability and the second is where a latent ability variable of an IRT model functions as an 
ability measure. 
 The most common method used in the first category is the Mantel-Haenszel (MH) 
approach where DIF is evaluated by testing whether the response probability, given number-
correct scores, differs between the groups. The MH test works quite well in practice under the 
Rasch model. Fischer (1993, 1995), however, argues that its application under other IRT 
models raises several theoretical limitations. For instance, sufficient statistics does not hold 
for the 2PL and 3PL models. Fischer’s view on sufficient statistics equally applies to the log-
linear approach where sum scores are used as proxies for ability; this view is also shared by 
Meredith and Millsap (1992). The observed score is nonlinearly related to the latent ability 
metric (Embretson & Reise, 2000; Lord, 1980) and factors such as guessing may preclude an 
adequate representation of the probability of correct response conditional on ability. Having 
said that, in general the correlation between the number-correct scores and ability estimates 
is quite high, so this is not the most important reason for considering alternative methods. 
The main problem arises in situations where the number-correct score loses its value as a 
proxy for ability. For example, there are test situations with large amounts of missing data 
and in the case of computer adaptive testing, where every student is administered a virtually 
unique set of items. In all these situations the number-correct score may not be appropriate 
for a meaningful assessment. 

In an IRT model, ability is represented by latent variable θ, and a possible solution to 
the number correct score problem is to apply the MH and log-linear approach using 
subgroups that are homogenous with respect to an estimate of θ. This, however, introduces 
a different problem that the estimate of θ is subject to estimation error, which is difficult to 
take into account when forming the subgroups. An alternative is to view DIF as a special 
case of misfit of an IRT model and to use the machinery for IRT model-fit evaluation to 
explore DIF. An overview of this approach was given by Thissen, Steinberg, and Wainer 
(1993). In that overview, evaluation of item parameter invariance over subgroups using 
Likelihood ratio and Wald statistics was presented as the main statistical tool for detection of 
DIF. Glas (1998, 1999) argues that the Likelihood ratio and Wald approach are not very 
efficient because they require estimation of the parameters of the IRT model under the 
alternative hypothesis of DIF for every single item. To address these shortcomings, Glas 
(1998, 1999) proposes using the Lagrange multiplier (LM) test by Aitchison and Silvey 
(1958), and the equivalent efficient-score test (Rao, 1948), which do not require estimation 
of the parameters of the alternative model. Further, this approach supports the evaluation of 
many more model assumptions such as the form of the response function, unidimensionality 
and local stochastic independence, both at the level of items (Glas & Falcón, 2003) and at 
the level of persons (Glas & Dagohoy, 2007).  

All methods listed above are seriously affected by the presence of high proportions 
of DIF items in a test and by the inclusion of DIF items in matching variable. To address this 
issue, several scale purification procedures have been suggested for the DIF detection 
methods, such as the two-stage or iterative Mantel-Haenszel method (Holland & Thayer, 
1988), the iterative Mantel method, the iterative generalized Mantel-Haenszel method 
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(Wang & Su, 2004a, 2004b), the iterative logistic regression method (French & Maller, 
2007), and the iterative linking IRT-based method (Candell & Drasgow, 1988; Park & 
Lautenschlager, 1990). 

Scale purification procedures are useful in maintaining Type I error rate and have 
high power when tests contain only a few DIF items. However, if tests have many DIF items, 
then DIF contamination cannot be completely eliminated by current scale purification 
procedures. Similar conclusions have been drawn when scale purification procedures were 
implemented on IRT-based DIF methods (Candell & Drasgow, 1988; Lautenschlager, 
Flaherty, & Park, 1994; Park & Lautenschlager, 1990) and non-IRT-based DIF methods 
(Clauser, Mazor, & Hambleton, 1993; French & Maller, 2007; Hidalgo-Montesinos & 
Gómez-Benito, 2003; Holland & Thayer, 1988; Miller & Oshima, 1992; Navas-Ara & 
Gómez-Benito, 2002; Wang & Su, 2004a, 2004b, 2010). In this paper we propose an 
alternative scale purification method using Lagrange multiplier tests to address DIF 
contamination. 

The significance of DIF, the extent to which the inferences made using test results are 
biased by DIF, is yet another important issue that needs to be looked at. The effect size of 
DIF is important to consider to avoid complicating inferences by practically trivial but 
statistically significant results. An example of a method to quantify the effect size is the DIF 
classification system for use with the MH statistical method developed by the Educational 
Testing Service (Camilli & Shepard, 1994; Clauser & Mazor, 1998). In an IRT framework we 
propose to use an estimate of the difference between the means of the ability distributions of 
the studied groups of respondents as an effect size. This is motivated by the fact that ability 
distributions play an important role in most inferences made using IRT, such as in making 
pass/fail decisions, test equating, and the estimation of linear regression models on ability 
parameters as used in large scale education surveys such as NEAP, TIMSS and PISA.  

In this paper we would first sketch a model of DIF and a concise framework of 
Lagrange multiplier test for the identification of DIF items. We would then present a number 
of simulation studies of the Type I error rate and power analysis. The difference between two 
versions of the LM test, one targeted at uniform DIF and one targeted at non-uniform DIF 
will be shown using a simulated example. This is followed by presenting an example using 
empirical data to show how the procedure works in practice. Finally, some conclusions are 
drawn, and suggestions for further research are provided. 
 

DETECTION AND MODELING OF DIF 
 

In IRT models, the influences of items and persons on the observed responses are 
modeled by different sets of parameters. Since DIF is defined as the occurrence of 
differences in expected scores conditional on ability, IRT modeling seems especially fit for 
dealing with this problem. In practice, more than one DIF item may be present and therefore 
a stepwise procedure will be proposed where DIF items are identified one or two at a time. 
Both the significance of the test statistics and the impact of DIF are taken into account. The 
following procedure will be used here for detection and modeling of DIF. First, marginal 
maximum likelihood (MML) estimates of the item parameters and the means and variance 
parameters of the different groups of respondents are made using all items. Then an item is 
identified with the largest significant value on a Lagrange multiplier (LM) test statistic 
targeted at DIF. To model the DIF in this item, the item is given group-specific item 
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parameters. That is, in the analysis, the item is split into two virtual items, one that is 
supposed to be given to the focal group and one that is supposed to be given to the 
reference group. Then, new MML estimates are made and the impact of DIF in terms of the 
change in the means and variances of the ability distributions is evaluated. If this change is 
considered substantial, the next item with DIF is searched for. The process is repeated until 
no more significant or relevant DIF is found. The assumptions of this procedure are that (1) 
the item which is mostly affected by DIF will have the largest value of the LM statistic 
regardless of the bias caused by the other items with DIF, and (2) the change in the means 
and variances of ability distributions will decrease when the items with the DIF are given 
group specific item parameters one or two at a time.  
 
IRT Models 

In the present study, we both consider dichotomously and polytomously scored items. 
For dichotomously scored items, the one-parameter logistic model (1PLM) by Rasch (1960), 
the two-parameter logistic model (2PLM) and the three-parameter logistic model (3PLM) by 
Birnbaum (1968) will be used. For polytomously scored items, we use the generalized partial 
credit model (GPCM, Muraki, 1992). However, the methods proposed here also apply to 
other models for polytomously scored items, such as the PCM by Masters (1982) or the 
nominal response model by Bock (1972).  

In the 3PLM, the item is characterized by a difficulty parameter i , a discrimination 

parameter i  and a guessing parameter i . Further, θn is the latent ability parameter of 

respondent n. The probability of correctly answering an item (denoted by X 1ni  ) is given 

by 
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If the guessing parameter i  is constrained to zero, the model reduces to the 2PLM 

and if the discrimination parameter i  is also constrained to one, the model reduces to the 

1PLM.  
DIF pertains to different response probabilities in different groups. Here we consider 

two groups labeled the reference group and the focal group. The generalization to more 
than two groups is straightforward.  A background variable will be defined by 

  1        if person n belongs to the focal group,

  0        if person n belongs to the reference group.ny


 


 

As a generalization of the model defined by equation 1 we consider  
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This model implies that the responses of the reference population are properly 

described by the model given by equation 1, but that the responses of the focal population 
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need additional location parameters i , additional discrimination parameters i , or both as 

given by equation 2. The first instance covers so-called uniform DIF, that is, a shift of the 
item response curve for the focal population, while the later two cases are often labeled 
non-uniform DIF, that is, the item response curve for the focal population is not only shifted, 
but it also intersects the item response curve of the reference population.  

For polytomous items, the GPCM by Muraki (1992) will be used. The probability of a 

student n scoring in category j on item i (denoted by X 1nij  ) is given by 
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 for j = 1,…, Mi. An 

example of the category response functions ( ) ij nP  for an item with four ordered response 

categories is illustrated in Figure 1. Further, the graph also shows the expected item-total 
score 
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where the item-total score is defined as 
1
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i ij
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T jX


 . Note that the expected item-total 

score increases as a function of  . 

 

 
Figure 1: Response functions and expected item-total score under the GPCM. 
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MML Estimation 
The LM test for DIF will be implemented in an MML estimation framework. To 

describe the statistic, MML estimation will be outlined first. MML estimation was developed 

by Bock and Aitkin (1981; see also Bock & Zimowski, 1997; Mislevy, 1984, 1986; Rigdon & 

Tsutakawa, 1983). In the MML framework adopted here, it is assumed that the respondents 

belong to groups, and that ability parameters of the respondents within a group have a 

normal distribution indexed by a group specific-mean and variance parameter. Let 

( )( ; )n y ng  λ be the density of ability distribution of group y, with parameters ( )y nλ  where 

y(n) = yn, i.e., the index of the group to which respondent n belongs. To identify the model, 

the mean and variance of one of the groups are usually set to zero and unity, respectively. 

Further, let ξ be a vector that contains all the item parameters. Finally, η is the vector of all 

item parameters ξ and the parameters λ of the ability distributions. The log likelihood 

function of η can be written as 

 

( )
1

) log ( | , ) ( ; )   .log (
N

n n y n
n
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where ( | , )n np x ξ  is the probability of response pattern xn of respondent n (n = 1,…, N). 

The estimation equations that maximize the log-likelihood are found by setting the first-
order derivatives of equation 5 with respect to η equal to zero. Glas (1999) shows that 
expressions for the first-order derivatives can be derived using Fischer’s identity (Efron, 1977; 
Louis, 1982):   
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The expectation in equation 6 is with respect to the posterior 

distribution ( )( | ; , )n n y np  x ξ . That is, the first order derivatives are equal to the posterior 

expectations of the first order derivatives of a likelihood function where the ability 
parameters are treated as observations. This grossly simplifies the derivations of the 

likelihood equations because ( )n η  is very simple to derive. As an example we derive the 

MML estimate for the mean of the ability distribution of the focal group, that is, the group of 
respondents where yn = 1. The distribution of the ability parameters is normal, so if the 

values of n  would be known, the estimation equation ( ) 0n
n

  η  would be equivalent to  
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By Fisher’s identity as given in equation 6, the MML estimation equation becomes 
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This identity will prove very helpful in the interpretation of the LM test for DIF as 

shown below.  
 
A lagrange multiplier test for dif 

In IRT, test statistics with a known asymptotic distribution are very rare. The 

advantage of having such a statistic available is that the test procedure can be easily 

generalized to a broad class of IRT models. Therefore, in the present article, the testing 

procedure will be based on the Lagrange multiplier test. In 1948, Rao introduced a testing 

procedure based on the score function as an alternative to likelihood ratio and Wald tests. 

Silvey (1959) rediscovered the score test as the Lagrange multiplier (LM) test. The LM test 

(Aitchison & Silvey, 1958) is equivalent with the efficient-score test (Rao, 1948) and with the 

modification index that is commonly used in structural equation modeling (Sörbom, 1989). 

Applications of LM tests to the framework of IRT have been described by Glas (1998, 1999), 

Glas and Falcón (2003), Jansen and Glas (2005) and Glas and Dagohoy (2007). The LM test 

is based on the rationale that there exists a general model and a special case of it which is 

derived by imposing one or more restrictions on the general model. The statistical hypothesis 

to be tested is given by these restrictions.  

To identify DIF as defined by the model given in equation 2, we test the null 

hypothesis 0i   and 0i   using the statistic given by 

 

 -1LM   =  ,' h  W  h       (8) 

 

where h is a 2-dimensional vector with as elements the first order derivatives of the 

likelihood function with respect to i  and i , respectively. W is the 2 x 2 covariance matrix 

of h. The statistic is evaluated in the point 0i   and 0i   using MML estimates under the 

null model, that is, using the MML estimates of the 2PLM or 3PLM. The idea of the test is that 

if the absolute values of these derivatives are large, the parameters fixed to zero will change 

if they are set free. In that case, the test becomes significant and the IRT model under the 

null hypothesis is rejected because of the presence of DIF. If the absolute values of these 

derivatives are small, the fixed parameters will probably show little change should they be 

set free. It means that the test is not significant and the IRT model under the null hypothesis 

is adequate. 

For the null hypothesis 0i   and 0i  , LM has an asymptotic chi-square 

distribution with two degrees of freedom. Details about the computation of W can be found 
in Glas (1998). The advantage of using the LM test instead of the analogous likelihood ratio 
or Wald tests is that only the null model, that is the 2PLM or 3PLM, has to be estimated and 
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using these estimates, a whole range of model violations can be evaluated, including DIF, 
violations of local independence, multidimensionality and the form of the response functions 
(Glas, 1999).  

As a special case, consider the alternative model given by equation 2, in the 2PLM 

version, that is, with 0i  , and with 0i  . Then the probability of a correct response 

becomes  
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If we treat ,i i   and n  as known constants this is an exponential family model 

with parameter i . It is well known that the first order derivative of an exponential family 

likelihood is the difference between the sufficient statistic and its expectation (see, for 

instance, Andersen, 1980). The parameter i  in equation 9 is an item difficulty parameter 

pertaining to the subgroup with yn = 1. The sufficient statistic for an item difficulty parameter 

is the number-correct score. So conditional on n  the first order derivative is 
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and using Fisher’s identity as given in equation 6 results in 
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So the statistic is based on residuals, that is, on the difference between the number-

correct score in the focal group and its posterior expected value.  
A DIF statistic for polytomously scored items based on residuals can be constructed 

analogously. To create a test based on the differences between item-total scores in 
subgroups and their expectations, a model is defined where the item-total score is a 
sufficient statistic, that is,  
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  is a sufficient statistic for i .  Therefore, an LM test for 

the null hypothesis 0i   will be based on the residuals  
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 An empirical example will be given in the last section of study.  
 

METHOD 
Design of the Simulation Study 

The simulation studies presented here concern the version of the stepwise procedure 

using the LM test targeted at uniform DIF - the test for the null-hypothesis ( 0i  ) and the 

LM test targeted at non-uniform DIF - the test for the null hypothesis ( 0i   and 0i  ). 

The simulations pertain to the 1PLM, 2PLM and 3PLM for dichotomous items.  These models 

were chosen as they are the most commonly used IRT models and their parameter 

estimation procedures are well defined. Ability parameters were drawn from a standard 

normal distribution. For the 3PLM studies, data were generated using guessing parameters 

fixed at 0.2. The item discrimination parameters were drawn from a log-normal distribution 

with a mean equal to 1.0 and a standard deviation equal to 0.5 and the item difficulty 

parameters were drawn from standard normal distribution, except for the items with DIF. For 

the latter items, the discrimination and difficulty parameters were fixed to one and zero, 

respectively. This was done to prevent extreme parameter values when the effect size i  was 

added. The above distributions for parameters were chosen because they were implemented 

in the standard IRT calibration software BILOG-MG. Effect sizes were 0i  , 0.5i   and 

1.0i  . Test length was varied as K = 10, K = 20, and K = 40. These test lengths are 

common in cognitive, achievement and personality assessments. The earlier studies have 

found that increase in number of items have an effect on power and Type I error rates (Glas 

& Meijer, 2003; Finch, 2005; Glas & Dagohoy, 2007). The sample sizes were N = 100, N = 

400, and N= 1000 per group. These sample sizes were chosen as they frequently occurred 

in the educational and psychological measurement. Previous studies have found the effects 

of sample size (Glas, 1999; Glas & Falcón, 2003). The number of DIF items was varied as 

0%, 10%, 20%, 30% and 40%. 100 replications were made in each condition of the study. In 

all studies a nominal significance level of 5 % was used. The Type I error rates were 

evaluated by proportion of times in the course of 100 replications a DIF-free item was 

mistakenly identified as exhibiting DIF. The power of test was determined by the proportion 

of times in the course of 100 replications a DIF item was correctly identified. 100 replications 

for each condition were used as they are frequently reported in the literature (Khalid, 2011; 

Shih & Wang, 2009; Fox & Glas, 2005). In the present example, the stepwise procedure 

consisted of four steps where two significant items (if present) were given group-specific item 

parameters in each step, so the changes in the means and variances of ability distributions 

were considered here as a stopping rule. The changes will be studied in the next section.  

Type I Error Rates 

Table 1 summarizes the performance of LM test as a function of sample size, test 

length, effect size, and the number of misfit items. The columns labeled K,   and N denote 

test length, effect size and sample size, respectively. The values beneath 0% shows the Type I 

error rate when no DIF items are present. The remaining columns give the proportion of 
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significant results for the items conforming to the model, aggregated over replications. These 

columns give an estimate of the Type I error rate in the presence of 10% to 40% misfit items. 

The Type I error rate approached the nominal significance level in all settings of a sample 

size of N = 400 and N = 1000 for the test lengths K = 20 and K = 40.  In the presence of 

DIF items, the control of Type I error rate deteriorated for a test length of 10 items with 30% 

or 40% DIF items. The fact that the false alarm rate was considerably higher than the Type I 

error rate shows that the presence of large misfitting items not only results in bias in the 

estimates of the misfitting items but also in bias in the estimates of the fitting items. It must 

be noted that 40% items with DIF is very high. If this percentage were equal to 50%, it 

cannot even be logically decided which one of the two parts of the test has DIF. Because DIF 

belongs to minority group of items. So the conclusion is that the control of Type I error is 

good for reasonable test lengths (K = 20 and K = 40) combined with a reasonable sample 

size (say, 400 or more), or for a short test length (K = 10) with less than 20% DIF items. The 

results for the 1PLM and the 3PLM were analogous and not shown. For instance the Type 1 

error rates inflate in the combinations of sample size N = 100 for the test length K = 10 in 

the presence of large DIF items, while for other combinations error rates were comparable 

with the 2PLM.  

 
Table 1: The Type I error rates by test length, effect size and sample size under the 2PLM. 

   Percentage of Items with DIF 
K δ N 0% 10% 20% 30% 40% 

10 0.5 100 0.06 0.07 0.08 0.09 0.13 
  400 0.05 0.04 0.06 0.09 0.20 
  1000 0.05 0.05 0.05 0.08 0.32 
 1.0 100  0.08 0.08 0.16 0.34 
  400  0.04 0.05 0.12 0.47 
  1000  0.05 0.04 0.11 0.55 
20 0.5 100 0.06 0.06 0.06 0.07 0.08 
  400 0.05 0.06 0.05 0.07 0.06 
  1000 0.05 0.06 0.06 0.05 0.06 
 1.0 100  0.06 0.06 0.07 0.07 
  400  0.06 0.05 0.05 0.04 
  1000  0.05 0.06 0.05 0.03 
40 0.5 100 0.13 0.15 0.15 0.15 0.15 
  400 0.06 0.05 0.05 0.07 0.06 
  1000 0.05 0.06 0.04 0.06 0.04 
 1.0 100  0.15 0.14 0.11 0.09 
  400  0.07 0.06 0.05 0.05 
  1000  0.05 0.06 0.05 0.04 
 
Power of the Test 

Table 2 and 3 show results of the estimated power of test in the same simulation as 

in the previous section, for the 2PLM and the 3PLM, respectively. The results for the 1PLM are 

not shown, because they were very close and not statistically different from the results for the 
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2PLM. In the columns labeled 10%, 20%, 30% and 40%, the values of the LM test statistic 

averaged over 100 replications are given. The results of simulation show that there were 

expected main effects of sample size, test length, and effect size on the power of the test.  

For instance, when sample size increases from 100 to 400 and 1000, the detection rate 

inflates considerably, irrespective of test length and the underlying model. Two effects are at 

work here: First, the precision of the estimates of the item parameters is positively related to 

the number of responses given to an item; and second, a larger sample size leads to a better 

filled table with more stable proportions of correct responses. 

 
The large effect size also makes a substantial difference in the power under both 

models. This is as expected; the larger the model violation, the larger the probability of 

detection. An additional potential factor which relates to the detection rate is the number of 

items in test. The proportion of hits generally increases as the test length increases. The 

explanation is that both the estimates of θ and the proportion of correct responses become 

more stable with a longer test length. This effect is uniformly present and the detection rate 

is positively related to the test length. The power for the 3PLM was comparable with 2PLM 

except for some combinations. The power for 3PLM was lower than the power for the 2PLM 

in conditions where the test length was 10, sample size was 100 and the percentage of DIF 

items was greater than 20%. In general, the proportion of hits decreased slightly as the 

percentage of misfitting items increased from 10% to 40%. The reason is that the bias in the 

estimates of the fitting items increased with the proportion of misfitting items. The decrease 

Table 2: The Power of test by test length, effect size and sample size under the 2PLM. 
   Number of Item with DIF 
K δ N 10% 20% 30% 40% 

10 0.5 100 0.33 0.28 0.21 0.17 
  400 0.81 0.85 0.70 0.52 
  1000 1.00 1.00 0.96 0.63 
 1.0 100 0.81 0.77 0.60 0.40 
  400 1.00 1.00 0.91 0.45 
  1000 1.00 1.00 0.93 0.37 
20 0.5 100 0.42 0.40 0.38 0.39 
  400 0.89 0.84 0.83 0.84 
  1000 1.00 0.99 1.00 0.99 
 1.0 100 0.84 0.89 0.87 0.87 
  400 1.00 1.00 1.00 1.00 
  1000 1.00 1.00 1.00 1.00 
40 0.5 100 0.54 0.52 0.47 0.48 
  400 0.88 0.87 0.86 0.87 
  1000 1.00 1.00 1.00 1.00 
 1.0 100 0.94 0.92 0.94 0.89 
  400 1.00 1.00 1.00 1.00 
  1000 1.00 1.00 1.00 1.00 
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in power is more evident where the test length was 10 and the proportion of misfit items was 

more than or equal to 30%.  

 
 

Table 3: The Power of test by test length, effect size and sample size under the 3PLM. 

   Number of Item with DIF 
K δ N 10% 20% 30% 40% 

10 0.5 100 0.18 0.10 0.05 0.05 
  400 0.80 0.58 0.48 0.30 
  1000 1.00 0.98 0.68 0.44 
 1.0 100 0.72 0.50 0.29 0.12 
  400 1.00 1.00 0.70 0.35 
  1000 1.00 1.00 0.83 0.37 
20 0.5 100 0.25 0.13 0.11 0.09 
  400 0.80 0.76 0.70 0.62 
  1000 1.00 1.00 0.97 0.89 
 1.0 100 0.78 0.62 0.58 0.52 
  400 1.00 1.00 0.99 0.95 
  1000 1.00 1.00 1.00 1.00 
40 0.5 100 0.30 0.20 0.20 0.20 
  400 0.86 0.76 0.77 0.76 
  1000 1.00 1.00 1.00 1.00 
 1.0 100 0.75 0.65 0.59 0.56 
  400 1.00 1.00 1.00 1.00 
  1000 1.00 1.00 1.00 1.00 
 

If we disregard the combinations of test length and sample size that have already 
been disqualified in the Type I error study reported above, it can be seen that the power of 
the procedure was high and for most combinations equaled to 1.0.  The samples of 100 are 
insufficient for conducting a test with reasonable power and Type I error rate characteristics 
(Hulin, Lissak, & Drasgow, 1982). The results show that the proposed method compares 
favorably with alternative scale purification methods. Finch (2005) conducted a series of 
simulations to compare the performance of MIMIC, the Mantel-Haenszel, the IRT likelihood 
ratio test and the SIBTEST and found that an inflated Type I error rate and deflated power 
when there were more than 20% DIF items in the test.  
 
DIF and Population parameters 

The second aim of the study was to address the issue of importance of DIF, i.e., the 
effect size, and related problem of defining a stopping rule for the searching procedure. The 
associated formal test of model fit based on a statistic with a known (asymptotic) distribution 
is only relevant for moderate sample sizes; for large sample sizes, these tests become less 
interesting because their power then becomes so large that even the smallest deviations 
from the model become significant. In these cases, the effect size becomes more important 
than the significance probability of the test. 

The location of the latent scale can be identified by setting the mean of the ability 

distribution of the reference population equal to zero. In addition, to identify the 1PLM, 2PLM 
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and 3PLM, the variance of the reference population can be set to 1.0. In the stepwise 

procedure defined above an identified DIF item is given group specific item parameters and 

new MML estimates of the item parameters and the parameters of the ability distribution are 

made. In the present case, the relevant ability distribution parameters are those of the focal 

population. It is assumed that the change in the estimates between steps gives an indication 

of the importance of the identified DIF.  

Table 4 gives the change in the estimate of the mean of the ability distribution of the 

focal ability distribution for one of the settings of the simulations reported above. The table 

pertains to the 2PLM and a test length of 20 items. The estimates are averaged over 100 

replications. The average standard errors of the estimates over 100 replications are reported 

at the bottom of the table for all three sample sizes. In every step, items identified with DIF 

were given group specific item parameters two at a time.  

 
Table 4 

Estimates of the mean of the ability distribution in the different steps of the purification 
procedure (test length K = 20). 

δ N DIF items Step 0 Step 1 Step 2 Step 3 Step 4 

0.5 100 10% -0.033 -0.025    
  20% -0.036 -0.031 -0.037   
  30% -0.067 -0.051 -0.063 -0.055  
  40% -0.085 -0.075 -0.072 -0.079 -0.066 
 400 10% -0.015 0.001    
  20% -0.051 -0.027 -0.009   
  30% -0.054 -0.030 -0.013 0.002  
  40% -0.090 -0.069 -0.048 -0.028 -0.010 
 1000 10% -0.023 0.001    
  20% -0.043 -0.019 0.001   
  30% -0.069 -0.044 -0.021 0.000  
  40% -0.094 -0.069 -0.044 -0.020 0.000 
1.0 100 10% -0.035 -0.000    
  20% -0.096 -0.055 -0.016   
  30% -0.136 -0.091 -0.061 -0.026  
  40% -0.150 -0.103 -0.056 -0.017 0.012 
 400 10% -0.026 0.017    
  20% -0.095 -0.046 -0.004   
  30% -0.137 -0.088 -0.043 -0.003  
  40% -0.214 -0.163 -0.113 -0.065 -0.023 
 1000 10% -0.046 -0.002    
  20% -0.102 -0.056 -0.013   
  30% -0.129 -0.083 -0.038 0.005  
  40% -0.194 -0.145 -0.098 -0.051 -0.005 
Average standard errors for the estimates: N = 100 : Se(Mean) = 0.180,  
N = 400 : Se(Mean) = 0.075, N = 1000 : Se(Mean) = 0.055 
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The column labeled ‘Step 0’ gives the estimates of the means in the initial MML 

analysis, where no items were treated yet. The true means were all equal to zero, so it can 

be seen that there was a clear main-effect of the percentage of DIF items present.  To some 

extent, sample size has an effect on the precision of estimates which can be seen at the 

bottom of the table. Further, it can be seen that in the final step of the procedure the 

estimates approach the true value of zero. In practice, the true value is of course not known 

and therefore the convergence of the procedure must be judged from the differences in the 

estimates between steps. In the present example, only uniform DIF was generated and as a 

consequence, there was no systematic trend in the estimates of the variances of the ability 

distributions. All estimates were sufficiently close to the true value of 1.0. As will become 

clear in the next section, this no longer holds when non-uniform DIF is present.  

 

Non-uniform DIF 

In the previous sections, the focus was on uniform DIF. In this part, a simulated 

example of non-uniform DIF is presented. In non-uniform DIF, usually both the difficulty and 

discrimination parameters differ between groups. Using the same setup as in the previous 

simulations, a dataset of 20 items was simulated using the 2PLM. DIF was imposed on the 

first 6 items of the test by choosing 0.50i    and 0.50i  . So in the focal group the 

discrimination parameters of the DIF items were lowered from 1.0 to 0.5 and the item 

difficulties rose from 0.0 to 0.5. This might reflect the situation where the respondents of the 

focal group were less motivated to make an effort on these items, which resulted in a lower 

probability of a correct response and an attenuated relation between the responses and the 

latent ability dimension. One of the questions of interest was the relation between the test 

targeted at uniform DIF (null-hypothesis 0i  ) and test targeted at non-uniform DIF (null-

hypothesis  0i   and 0i  ).  The results are shown in Table 6. The columns 3 to 5 pertain 

to the first MML analysis where none of the items were given group-specific item parameters 

yet, the columns 6 to 9 pertain to the situation after the third step when 6 items where 

identified as DIF items. Note that all 6 items were correctly identified. The columns under the 

label ‘df = 1’ concern the test for 0i  , which has one degree of freedom; the columns 

under the label ‘df = 2’ refer to the test for 0i   and 0i  , which has two degrees of 

freedom. Note that the test with one degree of freedom seems to have a higher power: in 

19 cases its significance probability is lower than the significance probability of the test with 

two degrees of freedom. The latter test has the lowest significance probability in 8 cases. So 

in practice, the test with two-degrees of freedom will not add much information over the test 

with one degree of freedom. One may notice that Item 7 was significant before the start of 

purification procedure (Step 0) under 1-df and 2-df test but it becomes non-significant at the 

end of the purification procedure (Step 3).  
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Table 5: A comparison of the purification process using the LM tests for uniform  

and non-uniform DIF. 
Item Start Purification Procedure (Step 0) End Purification Procedure (Step 3) 
 df = 1 df = 2 df = 1 df = 2 
 LM Prob LM Prob LM Prob LM Prob 
1 5.46 .02 8.22 .02 - - - - 
2 6.51 .01 9.65 .01 - - - - 
3 6.71 .01 10.59 .01 - - - - 
4 7.89 .00 11.84 .00 - - - - 
5 2.39 .12 6.00 .05 - - - - 
6 14.34 .00 20.23 .00 - - - - 
7 7.37 .01 9.56 .01 3.09 .08 3.36 .19 
8 0.11 .74 0.19 .91 1.89 .17 2.13 .34 
9 2.20 .14 3.46 .18 0.09 .77 0.09 .95 
10 0.20 .65 8.02 .46 0.17 .68 3.87 .14 
11 2.43 .12 2.60 .27 0.26 .61 0.61 .74 
12 0.07 .79 0.47 .79 1.44 .23 1.47 .48 
13 1.19 .28 1.19 .55 0.01 .94 0.50 .78 
14 0.12 .73 0.48 .79 1.52 .22 1.54 .46 
15 3.02 .08 3.54 .17 0.79 .37 0.79 .67 
16 0.97 .32 1.97 .37 0.00 .95 0.08 .96 
17 0.64 .42 0.66 .72 0.05 .82 1.68 .43 
18 2.10 .15 3.51 .17 0.29 .59 0.47 .79 
19 2.11 .15 2.13 .34 0.12 .73 0.65 .72 
20 0.43 .51 4.94 .08 0.02 .89 1.48 .48 
         
 Mean -0.237   Mean -0.111   
 SE(Mean) 0.078   SE(Mean) 0.084   
         
 SD 0.823   SD 0.985   
 SE (SD) 0.061   SE (SD) 0.080   
 

Finally, the estimates of the mean and standard deviation of the ability distribution of 
the focal group are given together with the standard errors at the bottom of Table 5. It can 
be seen that in the initial analysis (Step 0) both the estimate of the mean and the variance 
were biased. However, after three steps, the estimate of the variance is very close to its true 
value of 1.0 and the estimate of the mean is clearly within the confidence region around 
0.0. So in this case, the change in both parameters must be considered to judge the 
convergence of the procedure.  
 

AN EMPIRICAL EXAMPLE 
 

The example pertains to the scale for ‘Attitude towards English Reading’ which 

consisted of 50 items with five response categories for each. The data is based on the 

instrument reported by Khalid (2009), who has evaluated the psychometric properties of the 
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scale and found it to be appropriate for similar studies. The scale was administered to 8th 

grade students in a number of elementary schools in Pakistan. The respondents were divided 

into two groups on the basis of gender. The sample consisted of 1080 boys and 1553 girls. 

The item parameters were estimated by MML assuming standard normal distributions for the 

θ-parameters of both groups.  

Table 6 gives the results for the LM test of the hypothesis 0i  . The table only 

shows the first 14 items plus the 6 items with the most significant results in the remaining 36 

items. We have not presented rest of items due to space limitation. The column labeled ‘LM’ 

gives the values of the LM-statistics and the column labeled ‘Prob’ shows the significance of 

the probabilities. The statistics have one degree of freedom. Ten of the fifty LM-tests were 

significant at a 5% significance level. The observed item-total scores (first term in equation 

11) and expected item-total scores (second term in equation 11) averaged over the two 

groups are shown under the headings ‘Obs’ and ‘Exp’, respectively. To get an impression of 

the effect size of the misfit, the mean absolute difference between the observed and 

expected item-total scores are given under the heading “Abs.Diff”. The observed and 

expected values were quite close: the mean absolute difference was approximately .02 and 

the largest absolute difference was .19. This analysis was the starting point for the iterative 

procedure of identification and modeling of DIF. The item with the largest LM value, Item 37, 

was split into two virtual items, one that was supposed to be given to the boys and one that 

was supposed to be given to the girls. New MML estimates were made and the next item 

with the largest DIF item, 41, was identified. Figure 2 gives the history of the procedure over 

iterations in terms of the difference between the estimates of the means of the ability 

distributions of the boys and girls as obtained using the MML estimates. In figure 2, X-axis 

denotes the number of items that were modelled using proposed purification procedure. It 

does not indicate the label of items. The mean of the ability distribution of the girls was set 

to zero to identify the model, so the values displayed in Figure 2 are the averages for the 

boys, together with a confidence interval. Note that the initial change is quite large and the 

change decreases over iterations. The change of the variance of the ability distributions over 

iterations was very small. A conservative conclusion was to stop the modeling of DIF after six 

items because the impact on the estimates of the ability distribution (mean), and inferences 

made using these distributions, such as norming and equating, became negligible. In 

principle, the criterion to stop the procedure is the negligible changes in the mean of the 

ability distribution which can occur after any number of misfit items modeled. Specifically, for 

the data set studied here we may stop modeling DIF after 6 items. We have also found some 

items, for instance item 4, those were significant before the start of purification procedure 

but became non-significant at the end of purification procedure. The results support the 

hypothesis that presence of large misfit items introduces bias in the parameter estimation of 

non-significant items. 
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Figure2:  Change in the estimates of the means of the ability distribution over iterations. 

 
 

Table 6 
The results of LM test to evaluate fit of DIF. 

   Boys Girls  

Item LM Prob Obs Exp Obs Exp Abs.Diff 

1 1.09 0.30 2.75 2.70 2.49 2.52 0.04 
2 0.95   0.33 3.28 3.25 3.05 3.07 0.03 
3 2.70   0.10 3.23 3.18 2.94 2.98 0.04 
4 6.20 0.01 3.26 3.19 2.91 2.96 0.06 
5 2.45 0.12 2.70 2.76 2.65 2.60 0.05 
6 3.40 0.07 3.27 3.21 2.97 3.01 0.05 
7 1.02 0.31 3.13 3.16 2.97 2.95 0.02 
8 2.88 0.09 2.93 2.98 2.76 2.72 0.05 
9 0.40 0.53 3.11 3.13 2.91 2.89 0.02 
10 0.03 0.86 2.99 2.98 2.79 2.79 0.01 
11  0.20 0.65 2.67 2.65 2.44 2.46 0.02 
12  0.68 0.41 3.05 3.08 2.91 2.90 0.02 
13  3.28 0.07 3.32 3.27 3.00 3.03 0.04 
14  2.81 0.09 2.78 2.84 2.71 2.67 0.05 
25 8.50 0.00 3.02 3.11 2.95 2.88 0.08 
30 8.26 0.00 3.32 3.23 2.96 3.02 0.07 
33 4.51 0.03 3.14 3.08 2.81 2.85 0.06 
37 20.18 0.00 1.87 2.09 2.01 1.86 0.19 
41 14.21 0.00 2.30 2.48 2.41 2.28 0.15 
50 5.13 0.02 3.44 3.38 3.15 3.20 0.06 
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DISCUSSION AND CONCLUSION  
 

IRT is widely used in the field of educational and psychological testing for evaluation 
of the reliability and validity of tests, optimal item selection, computerized adaptive testing, 
developing and refining exams, maintaining item banks and equating the difficulty of 
successive versions of examinations. However, these applications assume that the IRT model 
used hold. The presence of misfitting items may potentially threaten the realization of the 
advantages of IRT models. The topic of model-fit has, over the course of the past few 
decades, become of increasing interest to test developers and measurement practitioners. It 
is widely known that DIF is one of the most important threats to IRT model fit. A method for 
the analysis of DIF has been proposed in this paper that addresses two issues. The first issue 
is that the presence of a large number of items with DIF has an impact on the detection of 
statistical search procedures for DIF. Several scale purification procedures have been 
developed to address this threat to DIF contamination, as we have argued, if test have many 
DIF items, then DIF contamination cannot be eliminated completely by scale purification 
procedures. A stepwise purification procedure has been proposed in this paper that consisted 
of alternating between identifying DIF using an LM test and modeling DIF using group-
specific item parameters. The second issue is the importance of DIF and the related issue of 
when to stop searching for DIF and modeling DIF. Many applications of IRT entail inferences 
about the latent ability distribution. Such as of norming and standard setting, linking and 
equating, the estimation of group differences and linear regression models on ability 
parameters as used in large scale education surveys. We highlighted the importance of DIF 
and its relationship to ability distributions and demonstrated that in order to monitor the 
purification procedure, we need to use the change of the estimates of the parameters of the 
ability distributions over the steps of the procedure.  

We provided evidence from simulation studies to assess the Type I error rate and 
power of the procedure. It was concluded that our proposed procedure worked well for 
sample sizes from 400 respondents and test lengths from 20 items. For a test length of ten 
items, the procedure only worked well when the proportion of DIF items was 10% and 20%. 
In all situations, the power slightly decreased with the increasing number of DIF items. The 
power for the 3PLM was less than the power for the 2PLM specifically in settings of test 
length K = 10 and percentage of DIF items greater than 20%. The proposed stepwise 
procedure performs quite well in terms of power and Type1 error rates. The performance of 
stepwise LM test was optimal over well documented statistical methods in the presence of 
20% or more DIF item which are reported in Finch (2005). In the case of uniform DIF, it was 
shown that DIF biased the estimates of the means of the ability distributions, but this bias 
vanished in the course of the stepwise purification procedure when DIF was modeled by the 
introduction of group-specific item parameters. In the case of non-uniform DIF, both the 
mean and variance of the ability distributions were biased, we have shown that this bias 
could be removed with group-specific item parameters. Finally, the simulation studies 
illustrated that the LM test targeted at uniform DIF was sufficiently sensitive to a combination 
of uniform and non-uniform DIF and the inferences did not change when the LM test for 
non-uniform DIF was used.  

One of the advantages of using LM tests for evaluation of item fit is that the 
asymptotic distribution of the statistics involved follows directly from asymptotic theory. 
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Therefore, the approach can easily be generalized to other model violations and other IRT 
models. Examples are the application of the approach to IRT models for polytomous items, 
evaluation of local independence, shape of item response function, assessment of 
dimensionality, test speededness and evaluation of person fit. 
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