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Abstract:  
A simulation model describing serial production is outlined. Production process is carried out 
under random disturbances. The control algorithm of the model is based on the analysis of 
essential states. Decision-making is based on preference rules. The model can be applied to all 
types of working shops or sections. 
Key words: serial production; simulation model; preference rules; method of essential states; 
randomised rules. 
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1. INTRODUCTION 
 
 Let us consider a simulation model describing serial production at a working shop or 

section [1,2]. Assume that the shop consists of L  groups of equipment, each of which  , 

L,...,2,1 , having m  machines or units of the same type. During the planning 

horizon  plTT ,0 , N  batches of parts are processed within the shop, each consisting of in , 

Ni ,...,2,1 , parts of the same type. Directive time limits iT  are set for operating each 

batch. 

 An arbitrary part iD  in the in -th batch goes through a certain number of operations 

ijO , iQj ,...,2,1 , on different groups of equipment, different operations possibly being 

performed on one and the same group of equipment, 
21 jj   . 

 Each technological operation is characterized by a number for the group of 

equipment and the duration of the operation (values j  and ijt ). All operations on part iD  

are carried out in a definite technological sequence  ijO , iQj ,...,2,1 , which must not be 

disrupted. 

 Each group of machines in the  -th group of equipment handles a queue of parts 

waiting to be processed on that group of machines. The queue discipline at moment t  is 

formed by randomized preference rules, i.e., parts are assigned for processing at a 

frequency in proportion to the value of preference function  ipF . 

 It is convenient to assume the preference function equal to a value inversely 

proportional to the position rank of part ip , denoting the deadline time required to 

accomplish processing the part by symbol iT . The position rank may be then calculated by 
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 Here t  denotes the current moment of time, iA  stands for the set of operations on 

the i -th part still being uncompleted. The preference function is determined by 
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where B  denotes the set of parts on queue at moment t  when rank position ip  ( Bi ) is 

calculated, and in  stands for the number of parts of the i -th batch unprocessed. 
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2. THE SIMULATION ALGORITHM 
 
 The simulation model’s algorithm is based on the following information about each 
batch of parts stored in a separate Array I: 

a) i  is the number of the batch of parts; 

b) iT  is the directive deadline for processing the batch; 

c) in  is the quantity of parts in the batch; 

d) j , ijt  are the numbers of groups of equipment and the time for performing 

the operation on the machines of the group (placed in order for the technological 
processing of the parts), respectively. 

A separate Array II provides information on the groups of equipment, which includes 

the number of the group of equipment j  and the number of units of equipment jm . 

The algorithm simulates advancement of parts from operation to operation, as well 
as processing of parts; in particular, it simulates the corresponding changes of information 

about the part. This includes i , the number of the batch; if , the number of the part in the 

batch; ijO , the number of the routine operation on the part; and 1, jit , the termination 

moment of the preceding operation. 
By storing and processing this information, we can simulate the individual processing 

of each part in the batch and obtain the total characteristics necessary for simulating the 
system as a whole. 

We will employ the following symbols for recording the flow chart of the simulation 

model’s algorithm: A  denotes calculating blocks, F  - blocks for simulating random 

variables, T  - blocks for transforming and processing information; L  - blocks for checking 

logical conditions, K  is a counter, and Z  is the block for terminating computation and 

providing final results of the simulation. Symbol mA  means that upon the block’s completing 

the procedure, we must unconditionally proceed to block m . Also, nmL ,  testifies that a check 

of logical conditions is required, and depending on its results, go to either block m  or n . In 

all other cases, when the corresponding index in the upper right part of the block is absent, 
proceed to the next block of the algorithm. The index in the lower right part of each block 
designates its ordinal number in the logical structure of the algorithm. 

This is the flow chart of the simulation model’s algorithm: 

1T   2T   4,1
3L   4T   5T   6T   7A   9,6

8L   9T   10F   12,9
11L   13,5

12L   13T   14T   15T   18,17
16L   17T   19,15

18L   

19T   20F   22,19
21L   22T   23A   25,22

24L   27,26
25T   23

26A   27T   27,22
28L   30,13

29L   32,31
30L   30

31A   32A   34,44
33L   

34A   36,38
35L   33,37

36L   44
37A   38A   42,40

39L   40T   43,45
41L   42T   43T   32,46

44L   45K   4,47
46L   47A   48K   

1,50
49L   50A   51Z . 

The main idea of the simulation model’s algorithm boils down to a combination of 
the method of essential states [1,2] with the simulating-at-a-constant-speed technique [1,2]. 
Let us briefly outline the algorithm blocks’ functioning in greater detail: 

Blocks 1-3 (in cycle) form array IM  of “accompanying cells” for the initial 

information on each batch. From the array obtained, Block 4 forms a queue to the L  groups 
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of equipment. The address of the destination of the accompanying cell in the queue is 

determined on the basis of relation jikr  2 , where k  is the address of an arbitrary 

memory cell of the computer. 
When the array of accompanying cells is completely formed, Block 7 determines the 

value of the corresponding priority coefficient for each batch. The calculation takes into 
account all the parts of the batch, except those already processed. 

Blocks 9-11 normalize values  ipF  in a way to comply with the conditions for 

normalizing and determining the probability within the given bounds:   10  ipF , 

  1
Bi

ipF . 

Blocks 5, 6, 8 and 12 form array IIM  in cycle, occupying memory cells similarly to 

array IM . 

Before beginning to simulate the loading of the equipment by means of a random 

numbers generator, Block 14 singles out the number of machines assigned to the L  groups 
of equipment. In order to reflect the work of the machines, a special array of memory cells 

IIIM  is assigned for this purpose. 

Block 16 reveals unoccupied machines, while Block 17 memorizes their amount. 
Block 20 engages the random numbers generator as many times as the number of 
unoccupied machines. A machine is regarded unoccupied if condition 

   



1i

ifM
i

i pFpF   (3) 

holds, where fM  are random independent values uniformly distributed in interval 

 1,0 , their quantity being equal to the number of unoccupied machines. 

Block 23 evaluates  
Bi

ipF , and Block 25 checks compliance with (3) for each 

random variable. If (3) holds, Block 27 memorizes the address of the batch sent to the 
machine and calculates the time value of the unproductive idleness of the parts in that 
batch. 

Blocks 30 and 31 dispatch the values of the duration of processing each operation 

fed in, to unoccupied cells of the memory array IIIM . After “loading” the machines, Block 32 

changes the time counter by value t , and Block 34 subtracts the contents of the time 

counter from the operation processing duration. Block 34 is guided by Block 33 comprising 
the counter of the number of loaded machines. If the processing is accomplished, the 

contents of one or more cells   of array IIIM  is equaled zero. 

The analysis of array IIIM  is controlled by Block 35. When 0 , we proceed to 

Block 38, which memorizes the time when the operation has finished processing. When 

0 , Block 36 applies to Block 33 in order to continue checking the contents of other 

array cells. When 0 , Block 37 registers the machine’s idle time. 
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Block 39 checks whether all the parts in the batch have been processed, Block 40 
removes the batch from the queue and changes the operation number in the corresponding 
“accompanying cell” if all the parts in the given group of equipment are processed. 

Block 41 checks whether any batch has finished processing. If a batch has not been 
completely processed, Block 42 changes the number of the part, and Block 43 reports that 
there is a released machine. Block 44 checks whether there are unoccupied machines. When 

H , return to Block 32 to continue simulating of processing the parts at the regarded 
operation. If the batch has been fully processed, Block 45 increases the number of processed 
batches by one. 

Block 46 checks whether all the batches have been fully processed. If not, return to 
Block 4 to simulate processing of the remaining batches. When all the batches have been 
fully processed, Block 47 memorizes the total time for processing all the batches, summing 
up the values of non-productive idleness of the parts in all batches, and determines the 
values of idleness for all the machines. 

Block 48 keeps the number of the iterative simulation cycle implemented, and Blocks 
50-51 calculate the histogram, and print out the results of the simulation. 
 

3. THE MODEL 
 

It can be well-recognized that regarding simulation of large-scale serial (mass) 
production, it is characterized by the fact that assembly sections consume parts uniformly, 
while processing of parts is carried out in batches. 

This is how the formalized flow chart of materials can be presented for such 
production. Assembly is ensured by sets of items and parts in special stores or bunkers, 
which are kept supplied by intermediate machine shops. No batch of parts is fed into 
production before the level of parts ready for assembly reaches a certain fixed value, called 
the order point. In turn, the machine shop, where the processing is to begin, places orders in 
the factory stores for the appropriate raw and semi-manufactured materials. The purpose of 
production we describe here is to ensure the assembly of parts needed with a given 
reliability at the minimum production expenditures, whose basic components are cost of 
equipment and of raw and semi-manufactured material reserves. 

The simulation model on Fig. 1 is based on an analysis of essential states, such as 
the moment of the routine order for any batch of parts, the moment when processing 
begins, when transferring from one operation to another, when completing the processing, 
moment when equipment goes out of commission and is restarted, as well as beginning of 
the shift, month, or year. 
 The random parameters of the simulation model are: 

1) the duration of non-stop work by machines and the time for repairing them; 
2) the number of workers; 
3) the number of discarded parts; and 
4) time when there is lack of semi-manufactured or raw materials necessary for 

feeding a batch of parts into production. 
The time for processing parts per operation is considered a deterministic value. 
The simulation model is adaptive in that the order points can be corrected if the 

frequency at which the planned production program being not carried out for period  plT,0  
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goes beyond the bounds of the planning horizon. After this, the entire simulation cycle is 
repeated upon setting the realization anew. There can also be corrections of preference 

rules Q  when there are queues of batches of parts for the machines. 

 

4. APPLYING PREFERENCE RULES 
 

Unlike the preference rules considered in [1,2], which are used mainly in small-scale 
serial and serial production systems, preference rules in large-scale serial production are 
represented in the form 

 npctttkkttQ wwifs ,,,,,,,,,,,  


  , (4) 

where: 

 
t  is the current time; 

 st  is the order moment; 

 
k  is the number of operations to be performed; 

 fk is the number of operations completed by moment t ; 

 



 is a vector, each i -th coordinate of which designates the coefficient of loading groups of 

equipment on which the i -th operation on the batch considered is carried out; 

 



  is the vector of coefficients of loading equipment for operations uncompleted by moment 

t ; 

wwi ttt ,,  are the duration for processing a batch of parts at the i -th operation, the total processing 

time for all operations, and the total processing time for operations uncompleted by 
moment t ; 

 
c  is the cost of raw and semi-manufactured materials; 

 
p  is the given reliability of supplying the assembly with ready parts of a given type; and 

 
n  is the number of parts in the batch being processed. 

 

sttQ 1  is one of the simplest preference rules. It indicates the degree to which a 

batch of parts is behind the order point. 
If we exclude the duration of processing parts in operations already completed from 

rule 1Q , we obtain rule sww ttttQ 2 , which characterizes the total idleness of the 

batch of parts in the course of operations done by moment t . 
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Figure 1.  Flow-chart of the simulation model for large-scale production type 

 
If we take into account the possibility of parts being idle in subsequent operations, 

preference should be granted to batches of parts designated to go through a large number 
of operations before processing is finished. In other words, the preference rule must forecast 
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any idleness of the parts in future. In the simplest of cases, these considerations lead us to 

rules  113  fkkQQ  and  124  fkkQQ . A more accurate idleness forecast should 

account not only for the number of uncompleted operations, but also for coefficients of 
loading the respective groups of technological equipment. Examples of such rules are 

 115 fQQ  ;  126 fQQ  ;  217 fQQ  ;  228 fQQ  , where 
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It is natural to assume that other conditions being equal, we should prefer more 
expensive parts, as well as parts for which the given reliability of supply for assembly is 
higher. These considerations bring us to the following rules: 

 wtcQQ 319  ;      1
112 1  pQQ ; 

 wtcQQ 3510  ;     1
913 1  pQQ ; 

 wtcQQ 3811  ;     1
1014 1  pQQ . 

(6) 

It is natural to assume that other conditions being equal, we should prefer more 
expensive parts, as well as parts for which the given reliability of supply for assembly is 
higher. These considerations bring us to the following rules: 
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j tt
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The simulation model makes it possible to test all the listed rules and find the most 
efficient of them. 

To conclude this paper it should be noted that optimization units do not enter into 
the simulation models for derail and large-scale serial types of production described above. 
These optimization units should be considered apart. 
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