
 

 
17

 
 

SPECIFICATION METHODS OF ECONOMIC PROCESSES 
 

Marian Pompiliu CRISTESCU 

Lucian Blaga” University of Sibiu 
 
Email: marian.cristescu@ulbsibiu.ro 

 

 

Ion IVAN 

A.S.E. Bucharest 
 
Email:ionivan@ase.ro 

 

 

Laurentiu CIOVICĂ 
A.S.E. Bucharest 
 
Email:laurentiu.ciovica@gmail.com 

 

Liviu CIOVICĂ 
A.S.E. Bucharest 
 

Email:liviu.ciovica@gmail.com 

 

 

ABSTRACT 
 
This paper present the stages by which we associate a formal language of a 

economic process. It proposes the use of a mathematical model, described as a graph, for 
the specification of business processes such as: investments, organization of production, 
activities of economic analysis. It deals with those economic problems that may be put into 
formal practice when there is no possibility of using one of the known techniques, or when 
we are modeling a business process, a manufacturing process etc. 

 
Keywords: optimization algorithm, economic modeling, formal language, graph 

 

 

1. INTRODUCTION 
 

A production process can be simulated or modeled effectively using linear bounded 
automated. However, if every time stock elements are bounded, then a finite state 
automaton can simulate the complexity of machine depends essentially on the size of graphs 
that describe technology products recipes. The unit of time is greater, the more the 
grammars associated with a system are simple, and the system is easier modeling. 

Operation of many devices due to continuous processes and signal deviations from 
normality can be simulated using sequential transducers. Through the practical 
consequences of these results can be listed: the ordering, production planning and 



 

 
18

programming, formal demonstration of the need for top-down design and implementation 
of information systems for manage the economic systems, necessity hierarchical 
management of socio-economic systems. 

Economic problems are put into formal practice when we wish to model a business 
process, a manufacture process, a part, etc. Each action of the respective business process is 
marked with: a, b, c, d, such actions having clearly defined periods of time, and the action 
pairs are those composed of strings of the form: ab*cab*bc…, ab, bb, bc, so that there are 
no other restrictions. 

 

2. USING FORMAL ELEMENTS FOR ECONOMIC SYSTEMS 
SPECIFICATION 

 
The model by which a language L is assigned to a business process Pi involves the 

following steps: 
1) For the beginning, we seek the elementary events of a process, namely the 

actionable atoms, by means of which any process development can be written as a string. 
Most times these events are naturally suggested by the process development. In some cases, 
we cannot make a natural separation of these elementary actions, but we have to make a 
cut out of the process with respect to a conveniently chosen time unit. The description of this 
process will be interpreted as elementary events; 

2) In both cases, the essential problem is represented by the finitude/ finiteness of 
the elementary events inventory, or otherwise of the vocabulary we are working on; 

3) Once the vocabulary has been found, we pass on to the identification of the 
language which describes the process. This requires knowing the process and the rules of 
process development; 

4) The purpose is to build effectively a grammar that generates strings that satisfy all 
these conditions imposed by fairness. Formally expressed, it can be written as [ATAN07]1: 

Given c1,c2, ... ,cn, the conditions that a string of elementary events must satisfy in 
order to be correct. For each i=1,2, ... ,n we build a language L(ci) of all strings that comply 
with the condition ci ignoring the others. The language that is sought is the intersection of all 
languages, namely: 


n

i
icLPL

1

)()(


         (1) 

Obtaining the languages L(ci) is carried out so that each condition corresponds to 
another method of building an associated language, namely its grammar. This way we can 
obtain an automat or a grammar used for simulating the system under consideration, and 
the conclusions on system behavior are obtained with the help of the automat. 

A mathematic model, called graph, can be used successfully in investments, 
organization of production, economic analysis activities, transport, etc. The graph is “a figure 
composed of points connected by arrows. The points symbolize different elements depending 
on the modeled phenomenon, and the arrows represent the connections that are established 
between the elements”. 



 

 
19

“Given },...,,{ 21 nxxxX   a finite set and )(: XPXU   which attaches to any 

Xxi   a subset XxU i )( . The pair ),( UX  is called graph. The elements of X are 

called the graph’s vertices. A pair of vertices ),( 1 jxx forms an arc if )( ij xUx  .” 

“A graph ),( UX  is marked, if there is a set  and a function U:  which 

associates to each arc an element from   called label” [ATAN02], [ATAN07], [CREA04], 

[JALO06]. 
From the definition of graph, for two nodes ai, aj of X, we cannot consider more than 

two arcs, differently oriented so that they might connect to each other. Waiving this 
restriction leads to consider the concept of multigraph. Multigraph is the pair (X, U), where X 

is the finite set of nodes, and ,XXU     is the finite set of labels. Between two 

nodes of X, there may be more arcs, differently labeled. By formalizing, we may notice that 
the path d has been identified by a string of the vocabulary X={x1, x2, ..., xn}. Just as well, 
the path d may be identified by the string: (ai1, ai2) (ai1, ai2)... (ai1, ai2), therefore like a string 

of arcs, a string of U*. If the function is injective, namely a string of *  can be assigned to 

each path of  , but the same string of * might correspond to more distinct paths of the 

graph  . This shift from paths in graphs to strings of symbols allows any problem regarding 
paths in graphs to be formulated and solved as a linguistic problem. In fact, there is an 
isomorphism between multigraph and finite automats. First of all, we naturally associate to 
each finite automat a multigraph, defined as: 

 

}),),,(|?),,{(,()( VaasssasKA ijji          (2) 

 
Vocabulary V is considered like lots of labels. To view the original state machine on 

this multigraph, draw an arrow from the outside toward the node associated with the initial 
state and the final states they encircle it with two lines.. Even if automatic A is deterministic, 

multigraph )(A can actually be a multigraph and not a marked graph. This think can be 

explained such. 
Whether regular language: L = {a, b}{c*}{a, b}. This language can be recognized 

by the next deterministic finite automaton. 

),,,,,( 0 FsVKA          (3) 

where:  

},{},,{},,,{ 2210 sFbaVsssK  100 ),(),( sbsas   ,   (4) 

11 ),( scs  , 210 ),(),( sbsas   , 

 
and associated multigraph is:  

)}).,,(),,,(),,,(),,,(),,,{(,()( 2121111010 sbssasscssbssasKA    (5) 

 



 

 
20

 
 

Multigraph )(A  associated with a finite automaton ),,,,( 0 FsVKA   is a graph 

marked only if either as: ,,,, 2121 VaaKss   if ),( 112 ass   and ),( 212 ass  , then 

21 aa  . Thus, it is concluded that: the language of )(A is infinite if only multigraph )(A  

contains circuits.  

Demonstrating backwards: if given a multigraph ),( UX  with XXU  , 

we can build the following associated finite automats: and 

XsXsXsA  000 ),,,,,(),(   for Xs  and a , }.)',,(,'{),( UsasXsas   

Any path in the multigraph   with the initial node in point s0, corresponds to a string of the 

language )),(( 0sAT   and vice versa. 

For finding all roads that unite a node si with a node sj, will take si like initial state 

and  sj, like final state (F = sj), ), then the language )),,(( 21 ssAT   indicate exactly the set of 

all roads in the form of rows of labels. 

If ),( UX  is a graph, then we may consider U  and ),( ji ss , and the 

previous automat will recognize paths written under the form of arcs. In order to obtain the 

paths of an unmarked graph ),( UX  written as strings over X – the set of nodes, with 

the help of a grammar, we may get the following result: 

Given ),,,}({)( PSXUSG   where S is a new symbol and P:  

}),(|),{(}),(),,(|),(

),{(},|),({

UsssssUsssssss

ssUsssssSP

jijjikjjikjj

jijijii




   (6) 

Obviously, the language ))(( GL  comprises all paths of the graph   written as 

strings of nodes. In order to generate only the paths that leave, for instance, from a given 

node si, we will eliminate all rules of the form: ),( jkk sssS   for any ik  . 

Similarly, in order to generate only paths which end in a given node sj, we will 

eliminate all end rules of the form: kki sss ),( , with jk  . 

It is worth noting the fact that, if the graph   comprises circuits, then the language 

))(( GL  is infinite. 

The demonstration is the following: 

Given 11 ,,..., iipi sss  in the graph   and the associated string x. Obviously, any 

sequence xn represents a path in  , so it is in the language ))(( GL and, therefore, this 

language is infinite. Vice versa, if ))(( GL  is infinite, then according to the lemma uvw for 



 

 
21

regular languages, it results that for any string z long enough to be written under the form of 

uvw with 0|| v , so that uviw ))((  GL , for any 0i . If ipii sssv ...21  because 

ipiiipii ssssssvv ...... 2121
 
represents a path in  , it result that vsi1 represents a circuit. 

Another way to address these problems and namely, to obtain the roads from a 
graph using the grammar is used to bypass trees. 

Whether G = (V, VT, S, P), a context-free grammar, so that every derivation D in 
grammar G, is associated with a derivation tree, such: 

 is marked with the S tree root; 
 if a tree node is marked with an unfinished  A and in the derivation D this 

nonterminal is rewritten using rules : rxxxA ...21 , ix  being the terminal or non-terminal 

symbols, then node A has r descendants mark from left to right with the symbols  rxxx ...21 . 

 According [ATAN02], [ATAN07], [JALO06], we may assign to a 

graph ),( UX , the grammar: ),},{,}({)( PSbXSG   , where: 

}|{}),(|{}|{ XsbsUssssXssSP ijjijiii     (7) 

Any derivation in the grammar )(G  will be of the form: 

bsssS ikii  ...21 , with ikii sss ...21 . We must make clear the fact that, when we 

refer only to paths from the node si  to the node sj, then we keep the initial and end rules, 

namely isS 
 
and bs j  . 

We must mention the fact that all derivations of b in the grammar )(G  will indicate 

such paths. Based on the building of grammar )(G  we may find all optimal paths, in terms 

of transport, on certain itineraries, with certain restrictions, in time units. 
In order to generate all possible itineraries that meet the conditions of a problem, it 

is necessary to be constructed by a linear grammar )(G for each race, so to have all 

itineraries that start with a point of departure, according to that race. 
For finding a minimum total road duration, going once through each point of the 

graph, there is at least one solution is found through Hamiltonian paths of a graph . 

Given ),( UX , a marked graph, so that to any arc of U we assign a positive real 

number expressing the duration of passing it, or otherwise, the cost of passing that arc. This 
problem may have interpretation in transport issues, in the technological flow of processing 

some parts nppp ,...,, 21 , on a certain machine, by replacing a part pi and adapting the 

machine in order to process another part pj, so that the time c(pi,pj) for the preparation 
thereof be minimal. In order to solve these problems, we can use optimal and heuristic 
algorithms.  In order to generate all Hamiltonian paths in a graph, there’s the method of 
Latin multiplication, mentioning the fact that it is difficult to program in order to be executed 
on the computer, assuming the memorizing of all paths with the length I in order to be able 
to generate paths with the length i+1. 

An algorithm that requires little memory, and which can be applied to any graph, is 
the algorithm based on the algorithm for generating permutations of a set in a 
lexicographical order.  



 

 
22

Be an oriented graph ),( UX , X={a1, a2, ... ,an}, X orderly crowd with the 

orderly  indices of the nodes, extending this to X* introducing the orderly lexicographer 
between the strings so that x, yX*: 

If )(Pr yefx , than it says that x < y 

If  )(Pr yefx and )(Pr xefy , but ,21 xaxx i 31 xaxy j with cu x1,x2,x3X* and 

ji aa   than it says that  x < y. We build the following grammar, independent from the  

context:  

),},{,}({ PSbXSG  , where: 

 },...,2,1|{},...,{ 21 nibaaaaSP in     (8) 

  jUaaiiiiaaaa ijikikiii  ,),(},,...,{,...{ 2,121  și }....21 kiii   

It observed that exists an unique derivation shift A, in report with the grammar G, 
with the following proprieties:  

 Any way in  A, has the length at most  n+ 1; 
 Any way contains different nodes; 

 The shift is maximal, in the sense that no rule bai  can’t be replaced with 

an undetermined rule without violate the integrate to one of the proprieties 1 or 2.  
There are removed from this shift all the ways, which have the length less than  n+1 

after its eliminated all the terminals arch, so the one who has the form  bai  , resulting a 

new shift  A'. 
Starting from the following theory [ATAN07], [CREA04], [JALO06]: ” The shift  A'  

contains all the Hamiltonians ways from graph  and the order endings ways from  A', 
match with the lexicography order of the Hamiltonian’s ways from  ”, resulting that the 
engendering  algorithm of the Hamiltonian’s ways, from graph  , it reduce to engendering 

from left to right of the shifts ways A'. Being )'},,,...,2,1,0({' Un    the extending graph, 

where: 

|),{(}),(|),{(' ioUaajiU ji   exist },...,2,1|),{(}),( niiUaa ji   (9) 

Considering the matrix 

jkkjim  |min{),(  și ,'),( Uki   }.,...,2,1,0, nji     (10) 

Being the graph: 

)}).,(),,(),,(),,(),,}{(,,,({ 23424131214321 aaaaaaaaaaaaaa   (11) 

Consider the associate graph: 
= (  
         {0,1,2,3,4, }, 
           {  
                     (1,2),(1,3),(1,4), 
                     (2,4),(3,2),        (12) 
              (0,1),(0,2),(0,3),(0, ), 
                     (1, ),(2, ),(3, ),(4, )  
          }  
          ),  
And the corresponding matrix is the following: 



 

 
23





























22

444

4322

321

, 

To get the crowd )(H and not P(X), the necessary modifications which are made, 

are necessary data like (ark,ark+1)U for any k.  The verification is made by using the matrix 
m.  

Considering the extension of the concept of Hamiltonian’s way. Being ),( UX  

un orientated graph, X={a1, a2,...,an}. 
Any n with form v = (p1, p2, ... ,pn), where pi is  un positive whole number  for any  i, 

it is called frequency vector.  A way from  passing through the node ai exactly on pi or, it is 
called Hamiltonian way engender associated vector v. I this case, if v = (1 ... n), then 
determine the classical notion of Hamiltonian way. The problem of searching the 
Hamiltonian’s ways, generalized, associated a vector v=(pl,p2,...,pn), can be reduced by one 
usual Hamilton way so that, for each node  ai we insert  pi - 1 new distinct nodes. 

 

3. MODELING THE ECONOMIC SYSTEMS WITH HELP OF THE GRAPH 
THEORY 
 
 If the graph is seen like a image of a system, the nodes representing the components 
of the system, than the immediate interpretation of an arch (xi, xj)  is that the component  xi, 
influences directly the component  xj. If the nodes are described as possible moods for the 
economic system, it can be said that an arch (xi, xj) signify the fact that the system can pass 
directly from status xi, in status xj. In both of the cases it has to do only with information 
about direct links; tough if a component xi  doesn’t influence directly the component  xj it can 
be influenced by other components, existing a series of intermediate components : x1, 
x2,...,xk, each a direct influence on the next and  xi, directly on  x1, while xk  has directly 
influence on xj. So, if it can be realized the through from stage xi, directly in stage xj,  it could 
still go through several stages and through other intermediate states. Since finding these 
influences  or possible transitions , is usually very important, this thing isn’t quite simple to 
realize for the case of a system with many components, therefore it is necessary to formalize 
the notion of possible ‘’influences” and ‘’ crosswalks’’, not necessarily directly. It is obvious 
that „xi influences xj" or "the crosswalk from stage xi in stage xj" is equivalent to saying that 
there in a graph exists a way from node xi to node xj. 

 
3.1 Search algorithms based on graph theory 

For modelling, the economic system it are used several techniques. A method used 
frequently, is the one that appeals to search algorithms. 

In [CORM02], [RADE02], is described the algorithm with help of which it makes 
searching for, in a directed graph with a finite number of nodes, to find all the possible 
ways.  

So: 



 

 
24

1 Step: it is build the Boolean matrix is built of direct adjacent, corresponding to the 
graph, noted with A. In this situation all the ways have the length 1. 

 It must be noticed that there is a connection between this matrix and the roads of 
length 2.  

Being two nodes xi and xj from graph. The existence of a road of length 2 between 
them implies the existence of a node xk, from the graph, with the property that there are the 
arch (xi ,xk) as well as arch  and arc (xi,xk) . To see if this exists, it takes at a run every node of 
the graph and check if there is or not both arcs ((xi, xk) and (xi, xk)). This is equivalent with 
checking if the directly adjacent of the Boolean matrix, exists any index k so that the k-line 
element i and the element k of the column j  are both equal to 1:   

111

100

10
.


   

101

000

10
.


 

then the verifications, described above, appear to be equivalent to the process of 
verification of the situation in which the element from the position (i,j)  of A2  equal to 1. The 
value 1 only say that there is at least one way, whose length is 2, between xi, and xj. If you 
want to determine the number of ways of length 2, there are used the rules of multiplication 
and addition.  

Also, it can be observed  that if there is a road of length 3 situated between nodes xi,  
and xj, , this implies the existence of a node xk  so that you can determine the existence of a 
road with length 2 from xi, to xk , and an arch from xk  to xj, , which is equivalent with  the  
check of existence to at least of an index k  so that the element k  placed on line i of the  
matrix A2 and the element k  on the j-th column in the matrix A  are at the same time equal 
with 1 or, more simple, if the element (i,j) from A3  is 1. 

Starting from the ones presented above shows that the existing roads with length k, 
is given by the matrix values Ak , if you have used rules of Boolean algebra and their number 
are given by Ak  if the usual rules were used.  

 
Step 2: we calculate, in succession, the power of A till the power of An-1. 
If between the nodes xi,  and xj  exists a road with  length   n , then he will contain a 

number of nodes at least equal to n+1  and, as in the graph are just n peaks, it is clear that at 
least one, for example xk,, will appear twice. Here will be, in this case, a road from the xi, to the 
first appearance of the xk, and a road from the last apparition of the xk and xj. Eliminating all the 
nodes of the first appearance of xk and the last one, it results a way from xi, to xj, xj, in which xk 
appears only once. Applying the method described above, all nodes with multiple appearances 
on the road, it will get a road from xi, to xj, in which each node appeared only once, which is 
obviously less than n arches. In conclusion, if there is at least one way from xi, to xj , then there is 
an elementary way and there will exist  a power of A, between A1 and An-1, in which the position 
(i,j)  is different from 0. In order to demonstrate the existence of a road between any two nodes it 
is necessary to calculate only the first n-1  powers of A.  

 
Step 3: we calculate the matrix D = A + A 2 + ... + An-1  
If you want only the determination of roads between the nodes, and not their 

number, you use multiplication and the Boolean adding, and in accordance with the above 
observation, we obtain: 



 

 
25

dij= 




ji

ji

xlaxladedrumunniciexistănudacă

xlaxladedrumunputincelexistădacă

,0

,1
 (13) 

In this case you can observe that:  

 


 12
2

32
2

21
2

0
2

2 ...)( nn
nnnn

n ACACACACIAA   (14) 

DAAAA n  132 ...  

As a result it is enough to calculate only the power n-2 of the  matrix A+I , and then 
the multiplication with A . The advantage of this method, in terms of the economy, is 
supported by the following observation: if D contains all pairs of arches, among which there 
exists a road , then:   

DAAAAAAD knnnn   ...)...( 112  being any  0k  

  DAAAAAAAIAA knnnnkn 11122 ...)...()(  (15) 

222 )()()(   nknn IAAIAAIAA being any 0k   

Therefore, starting with power k = n-2, all matrices Ak are equal. As such, it goes 
directly to the calculation of any powers of A+I  which is greater than or equal to n-1. 

For example, you can calculate: 
r

IAIAIAIA 2222 )(,...,)(,)(,)(
321

 ,     (16) 

 

where r represents the first power of  2 for which: 22  nr .  

The above procedure allows you to determine if there is or not at least a road 
between two nodes, possibly what length he has and how many are this long. However, in 
practical problems, the most important is to know which actually these roads are. 
Considering that, all roads can be decomposed into elementary roads, and in the practical 
problems, they are generally matters of interest, the following steps of the algorithm will be 
dedicated to finding them and their decomposition. In order to find them, we use the 
representation of the graph through the Latin matrix from the case F.  

The Latin matrices attend to the relation for defining a graph. Sequences of peaks 
from a graph can be characterized by certain properties. According to [MINU02]”the peaks 
from an orientated graph which have the same proprieties and, which succeed in a one 
compatible order with the order from the graph, it is called sequence”. The operation can be 
realized with the sequences, which have the same property, is called concatenation. 

  
The 4th step: building the Latin matrix  L associated to the graph, where: 

  lij=




),(,0

),(,

ji

jiji

xxarchexistnotif

xxarchexistifxx
   (17) 

and matrix 
~

L  is defined by: 
 

  
~

l =




),(,0

),(,

ji

jij

xxarchexistnotif

xxarchexistifx
   (18) 

 
named the Latin matrix reduced. 



 

 
26

The process for finding a way with length size 2, from xi, to xj implies finding a node 
with the property that the arches exist (xi,xk) and (xk,xj)  and memorize the vector (xi, xk, xj) 
.This is equivalent for finding a index k so that the element on the k position of i line, from 

the L matrix should be xi,xk and the element on the k position of column j, from the matrix 
~

L  

should be xj. It will be multiplied matrix L with the matrix 
~

L ,but using special calculation 
rules, named Latin multiply and addition.  

It is called alphabet, a set of signs named symbols or letters }/{ Iisi   where I is a 

ordinary set of indexes, defined or undefined. 

It is called word a set defined by symbols named: 
niii SSS ...

21
. 

It is called latin multiply an operation defined by the set of words from an alphabet 
noted ”xL” so: 

 

  s
mnm jjjiiijjjLiii ssssssssssss ............

21212121
     (19) 

 
the product of two words is obtained by “counteraction” them. 
The Latin multiply is associative, has a neutral element the word void, is not 

commutative and an element is irreversible only is the word is void. 
It is called Latin addition a function defined on a set of words of an alphabet with 

values in the set of the parts set of words, noted ”+L” as: 
 










m

n

m
jjj

iii

jjjLiii sss

sss
ssssss

...

...
......

21

21

2121
     (20) 

 
the sum of  two words is the set having those two words. 
 
The 5th step: is calculated, successive, the matrix: 

L2=L L
~

L  , L3=L2
L

~

L  , ..., Lk+1=Lk
L

~

L      (21) 

 
Using the Latin multiply and addition operations, the alphabet being the set of nodes 

of the graph, where the multiply operation is easily to modified, the product of two elements 
of the matrix is 0,in case at least one is zero or a common node comes and is the Latin 
product of them , in contrary case. 

From the way it was built, the matrix Lk will contain all the elementary ways of length 
k. Due to the fact that an elementary way has at most n nodes it results that: 

 the first n-1 powers of L contain all the ways from the graph; 
 there are powers of L that are higher or equal to n and has all the elements 

equal to 0; 
 matrix Ln-1  contain all the Hamilton ways from the graph(if they exist); 
Because obtaining the matrix D, using the method described earlier, needs a volume 

very high of calculation, for example: for a graph with 100 nodes, calculations will be 
100x100 raised to 100 power, for the D matrix it can be applied with success the next 
algorithm: 



 

 
27

Step one: the adjacency matrix A is built; 
Step two: for each line is addition, Boolean, all the j line for those aij = l; 
Step 3: it repeat the step two until the matrix remain the and there are no ’1’s. 
The last matrix resulted is the matrix of the D ways, also named the matrix of total 

connection. This method, although easier, it does not lead which are those ways and for 
finding them, it applies, for instance, Latin multiply. 

 
3.2 Optimization algorithms of the economic flow based on the graph theory 

Considering that, the economic flows can be associated with some flows from the 
classic graph theory, in economic theory and practices it assumes using a set of algorithms, 
evolved, and developed in operation research. From these algorithms it was choose Ford 
Fulkerson. 

The method Ford-Fulkerson solves the maximum flow problem. This method is based 
on three important theories, which exceed the algorithm and it is also used in other 
problems related to flows: residual networks, improvement ways and cuts [CORM02], 
[RADE02]. 

Ford-Fulkerson’s method is iterative. It starts with a flow f(u, v) = 0 for Vvu , , like 

the initial flow with value 0.At every step of the iteration it enlarges the value of the flow by 
finding a „improvement way”, which is a way along which its flow can be enlarged, so its 
value too. Repeat those steps until these is no improvement way found. 

 
a) Residual network 
For a transport network and a flow, it can be said that there is a residual network 

that consist from the arches that admit the biggest flow. According to [CORM02], if there is a 
transport network with the form: G=(V, U) with source s and destination t, and f is a flow in 

G and is considered a pair of peaks Vvu , , the amount of additional flow which can be 

transported from u to v, without overcome the capacity c(u,v), is the residual capacity of the 
arch (u,v) defined by: 

),(),(),( vufvucvuc f         (22) 

Having a transportation network G= (V,E) and a f flow, the residual network of G 

induced by f is ),( ff EVG  , where: 

}0),(:),{(  vucVVvuE ff       (23) 

Every arch of the residual network, or residual arch, admits a strictly positive grow of 
the flow. 

It can be observed that (u, v) can be an arch in Ef even though it is not an arch in E, 

is observed that EE f  .This kind of arch (u,v) can appear in Gf only if Euv ),(  and if 

there is a positive flow from v to u. Because the flow f(u,v) from u to v is negative, 

),(),(),( vufvucvuc f  is positive and fEvu ),( .Because the arch (u,v) can appear in 

the residual network only if at least one of the arches (u,v) and (v,u) appear in the original 

network ,we have EE f 2 .It can be observed that the residual network Gf is a transport 

network with capacity function cf. 
 
 



 

 
28

b) Improvement ways 
According to [CORM02],”having a transport network G= (V,E) and a flow f, a 

improvement way p is a simple way from s to t in the residual network Gf. After the definition 
of the residual network, every arch (u,v) on an improvement way admits a additional positive 
flow ,without breaking the restriction of capacity.” 

Residual capacity of p is the maximum capacity of the flow that can be transported 
along the improvement way p, given by the formula: 

}),(:),(min{)( pwaytheisvuvucpc ff      (24) 

 
 c) Cuts in the transport network 

Ford-Fulkerson’s method grows the flow repeatedly, along the improvement ways, 
until it gets to a maximum flow. The theorem of the maximum flow-minimum cut, 
demonstrates the fact that a flow is maximum, if and only if in the residual network doesn’t 
exist ways of improvement. 

A cut (S,T) of a transport network G=(V,E) is a partition of the V set in the S and T=V-

S set, so Ss and Tt .If f is a flow ,then the cut flow (S,T) is defined equal to f(S,T).The 

capacity of the cut (S,T) is c(S,T). A minimum cut is the cut with the lowest capacity from the 
whole network cuts. 

 
d) Ford-Fulkerson algorithm 
In every iteration a Ford-Fulkerson method is searching for a randomly improvement 

way p and it is growing the flow f along way p at residual capacity cf(p). Implementation of 
the method allows the calculation of the maximum flow in the G= (V,E) graph, updating the 
flow f[u,v] between any other two peaks which are bounded thru an arch. If u and v are not 
bounded thru an arch in any other direction, it is suppose that f[u,v]=0. The value of the 
capacity of the peaks u and v is given by the function c(u,v) computable in a constant time , 

c(u,v)=0 if Evu ),( . 

 
Schematization of the algorithm Ford-Fulkerson (G,s,t): 
 

1: for every arch ][),( GEvu   execute 

2:                       0],[ vuf  

3:                      0],[ uvf  

4: as long there is a way p from s to t in the residual network Gf execute 

5:                     }),(:),(min{)( wayponisvuvucpc ff   

6:                     for every arch (u,v) din p execute 

7:                                  )(],[],[ pcvufvuf f  

8:                                  ],[],[ uvfuvf   

 
Lines between 1 and 3 initialize the flow i with value equal to 0. The cycle ”as long” 

from the 4-8 lines finds, by turn, an improvement way p in Gf and increases the f flow along 
p with the value of the residual capacity Cf(p). When there is no improvement way then f is at 
a maximum flow. 



 

 
29

The execution time of the Ford-Fulkerson algorithm depends on the way of 
determination of the improvement way p. If the chosen way is wrong it can happen that the 
algorithm does not stop: value of the flow increases successive, but doesn’t converge to its 
maximum value. 

The execution time of the Ford-Fulkerson algorithm is given by |)|( *fEO , where f* 

is the maximum flow resulted from the algorithm. The execution time for line 1 to 3 is 

)(E .Lines 4-8 executes at most | f* |, because the value of the flow increases at every 

step with at least a unit. 
 

4. IMPLEMENTATION OF OPTIMIZATION ALGORITHMS FOR A 
TRANSPORT PROBLEM 

 
A transport company has 35 trucks which must move in point J. Displacement of the 

35 trucks from one place to another is done in stages, so in the first step is to get as many of 
them in point J. In their way, the trucks have to make one more stop  in one of the other 
intermediate point B, C, D, E, F, G,H ,I, J . Reception conditions, supply and so on, are to be 
a limitation of routes used, existing capacities are listed on the network arches. 

 

A

B

C

D

E

F

G

H

I

J

12

3

20

4

4

5

6 3

3

5

35
10

13

10

12

 
 
The objectives are to determine the optimal transport plan so that, at this stage a 

large number of trucks could go toward point J. 
The problem of maximum flow crossing transport network, has the following 

mathematical form, using linear programming in order to fix it: 
 



 

 
30
































 

 

 




































1

0

1

0

,
1

,
1,

1

0

1

0

,
0

,
0

1

0

1

0

,,

,,

maxmax

);,1(

);1,0,(0

n

j

n

j
nnj

m

j

n

j
jj

n

j

n

j
ijij

ijij

ni

njic

conditiileînz

 

 

Where: ),( ji yxu   is the arch,   is the flow value and ,,
)( iju   is arch flow. 

Automaton corresponding to algorithm is ),,,,( 0 FqQM   and has the 

following values 

 JIHGFEDCBAQ ,,,,,,,,,  , F={J}, alphabet input is given by 

 12,10,13,3,5,3,3,10,5,4,4,6,5,20,3,12 , passing functions are defined in the following 

manner: 
 
 
 
 

BA )12,(
 

GB )5,(  EC )4,(  

CA )3,(  EB )6,(  FC )4,(  

DA )20,(
 

  

   

FD )5,(
 

GE )3,(  HF )5,(
 

ID )10,(
 

HE )3,(
 

IF )3,(  

   

JG )13,(
 

JH )10,(
 

JI )12,(
 

 

Regular grammar ),,,( PSVVG TN  where  JIHGFEDCBAVN ,,,,,,,,, , 

 12,10,13,3,5,3,3,10,5,4,4,6,5,20,3,12TV , with the set of rules for generating: 



 

 
31

1) BA 12  2) CA 3  3) DA 20  

4) EB 6  5) GB 5   

6) EC 4  7) FC 4   

8) FD 5  9) ID 10   

10) GE 3  11) HE 3   

12) HF 5  13) IF 3   

14) JG 13    

15) H →10J   

16) JI 12    

17) J    

 
Possible derivations, based on the grammar are:  

135121351251212 )17()5()1(  JGBA  

133612133612361261212 )17()14()10()4()1(  JGEBA  

103612103612361261212 )17()15()11()4()1(  JHEBA  

1334313343343433 )17()14()10()6()2(  JGECA  

1034310343343433 )17()15()11()6()2(  JHECA  

1054310543543433 )17()15()12()7()2(  JHFCA  

1234312343343433 )17()16()13()7()2(  JIFCA  

105520105520552052020 )17()15()12()8()3(  JHFDA  

123520123520352052020 )17()16()13()8()3(  JIFDA  

121020121020102020 )17()16()9()3(  JIDA  

 

The language generated is L={ 13512  , 133612  , 103612  , 13343  , 

10343  , 10543  , 12343  , 105520  , 123520  , 121020  } 

In the case where for each sub graph defined by the grammar derivations, the 
maximum flow is established, there is the whole graph value of 41 trucks driving from point 
A to reach the point J. This is not correct because there are duplicates of the minimum flows 
on certain routes, which must be removed.  Solving the problem with the help of Ford-
Fulkerson algorithm,  the maximum flow starting from point A, and arrives at the point J, is 
28 trucks. 

11/12

3/3

14/20

5/5

6/6 3/3

3/3
0/4

3/4

5/5

9/10

3/3

5/5

8/13

8/10

12/12

A

B

C

D

E

F

G

H

I

J

 
Figure 1. Solving problem with Ford-Fulkerson algorithm 



 

 
32

 
It is observed that the difference between the two values is given by the carrying 

capacity of the point G, H and i. these values are: 
○ for the G-spot maximum capacity supported is 8, and from the grammar we obtain        

11 
○ for the H-spot maximum capacity supported is 8, and from the grammar we obtain   

14 
○ for the I-spot maximum capacity supported is 12, and from the grammar, we 

obtain 16 
The problem arises from section I for which, through grammar obtained above, there 

are the values given by sub graphs: ACFIJ, ADFIJ and ADIJ, which have a minimum capacity 
of 2, 3 and 10. Point 1 may have the maximum flow of just 12, according to problem solving 
using algorithm, resulting one from the two sub graphs (ACFIJ, ADFIJ) has in fact the 
minimum capacity of 2, and the other is doubled as value. 

To remove the duplicate values that are not found, there’s no method to bring a plus 
and to lead to a result equal to that which is found by the method obtained by Ford 
Fulkerson. 

In the case of a graph with a small number of nodes, this is very easy to apply. 
 

5. CONCLUSIONS 
 
In the paper, we simplified the problem specifying economic processes so that simple 

notations as: a, b, c, d, signifies actions with well-defined timescales, and pairs of actions are 
represented by a string of characters so that will no longer be any other restrictions. 

There were treated formal logic elements, and has been described as part of 
mathematical logic in which logical variables are sentences. 

Seeing the graph like an image of system, the nodes represent the components of 

the system, then an immediately interpretation of an arch ( ji xx , ) it is the one specifying that 

component ix  is the one which influences directly the component jx . Using this 

interpretation there are presented two algorithms : the algorithm in which can be found all 
the ways on the graph, orientated to a finite number of nodes,  as well the construction 
algorithm of the Latin matrix in which the alphabet represent the set of the nodes of the 
graph. 

All roads in the merged graph are decomposed into elementary roads, this being 
followed in practice specification economic systems. Carrying out the decomposition in the 
basic road is performed by using the Latin matrix. 

It was presented the Ford-Fulkerson algorithm and how to solve a problem with this 
algorithm. The problem, initially, is resolved with the help of formal languages and grammar 
and language are identified. The result thus obtained was compared with the problem 
solved by the Ford-Fulkerson algorithm. 

 
 
 
 
 



 

 
33

REFERENCES 
 

Atanasiu A., Limbaje formale și automate, Editura Infodata, Cluj, 2007; 
Atanasiu I., Raicu D., Sion R., Mocanu I., Limbaje formale și Automate, Îndrumar pentru 

aplicații, 2002 
Bocu D., Bocu R., Modelare obiect orientată cu UML, Editura Albastră, Cluj Napoca, 

2006 
Cocan M., Pop B., Logică computațională, Editura Albastră, Cluj Napoca, 2006 
Cormen H. Thomas, Charles E. Leiserson, Rivest R. Roland, Introducere în algoritmi, 

Editura Agora, 2002 
Creanga I, Reischer C., Simovici D., Introducere algebrică în informatică, Editura 

Junimea, Iași, 2004 
Jalobeanu C, Marinescu D, Bazele teoriei calculului limbajelor formale și automate, 

Editura Albastră, Cluj Napoca, 2006 
Minuț P., Kupan A. P., Cercetări operaționale, Târgu Mureș, Editura „Dimitrie Cantemir”, 

2001 
Minuț P., Matematici aplicate în economie, Târgu Mureș, Editura „Dimitrie Cantemir”, 

2002 
Rădescu N., Rădescu E., Probleme de teoria grafurilor, Editura Scrisul Românesc, 2002 

                                                 
1  
[ATAN07] Atanasiu A., Limbaje formale și automate, Editura Infodata, Cluj, 2007 
[ATAN02] Atanasiu I., Raicu D., Sion R., Mocanu I., Limbaje formale și Automate, Îndrumar pentru 

aplicații, 2002 
[BOCU06] Bocu D., Bocu R., Modelare obiect orientată cu UML, Editura Albastră, Cluj Napoca, 2006 
[COCA06] Cocan M., Pop B., Logică computațională, Editura Albastră, Cluj Napoca, 2006 
[CORM02] Cormen H. Thomas, Charles E. Leiserson, Rivest R. Roland, Introducere în algoritmi, Editura 

Agora, 2002 
[CREA04] Creanga I, Reischer C., Simovici D., Introducere algebrică în informatică, Editura Junimea, 

Iași, 2004 
[JALO06] Jalobeanu C, Marinescu D, Bazele teoriei calculului limbajelor formale și automate, 

Editura Albastră, Cluj Napoca, 2006 
[MINU01] Minuț P., Kupan A. P., Cercetări operaționale, Târgu Mureș, Editura „Dimitrie Cantemir”, 

2001 
[MINU02] Minuț P., Matematici aplicate în economie, Târgu Mureș, Editura „Dimitrie Cantemir”, 2002 
[RADE02] Rădescu N., Rădescu E., Probleme de teoria grafurilor, Editura Scrisul Românesc, 2002 
 


