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ABSTRACT 
Experimental and empirical data are often analyzed on log-log plots in order to find 

some scaling argument for the observed/examined phenomenon at hands, in particular for 
rank-size rule research, but also in critical phenomena in thermodynamics, and in fractal 
geometry. The fit to a straight line on such plots is not always satisfactory. Deviations occur 
at low, intermediate and high regimes along the log(x)-axis. Several improvements of the 
mere power law fit are discussed, in particular through a Mandelbrot trick at low rank and a 
Lavalette power law cut-off at high rank. In so doing, the number of free parameters 
increases. Their meaning is discussed, up to the 5 parameter free super-generalized 
Lavalette law and the 7-parameter free hyper-generealized Lavalette law. It is emphasized 
that the interest of the basic 2-parameter free Lavalette law and the subsequent 
generalizations resides in its "noid" (or sigmoid, depending on the sign of the exponents) 
form on a semi-log plot; something incapable to be found in other empirical law, like the 
Zipf-Pareto-Mandelbrot law. It remained for completeness to invent a simple law showing an 
inflection point on a log-log plot. Such a law can result from a transformation of the 
Lavalette law through x → log(x), but this meaning is theoretically unclear. However, a 
simple linear combination of two basic Lavalette law is shown to provide the requested 
feature. Generalizations taking into account two super-generalized or hyper-generealized 
Lavalette laws are suggested, but need to be fully considered at fit time on appropriate data. 

Keywords: graphs, plots, nonlinear laws. 
 

1. INTRODUCTION 
 
 In recent years, following the rise in the understanding of critical phase transitions 
[1] through the notion of critical exponents, many results have been presented on log-log 
graphs. It should be emphasized at once that the search for a straight line fit on such a 
graph is of interest when the hypothesis of scaling is appropriate for the examined property 
or effect. Then, the slope on the plot gives some indication of some characteristic exponent 
at the phase transition because the underlying analytical function, the excess free energy [1], 
has a homogeneity property. Two other major scientific concepts, related to some underlying 
scaling hypothesis, have also led to examining log-log plots for various quantities: one is the 
notion of fractal dimension [2], the other is the rank-size relationship through so called Zipf 
plots [3]. 
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 It is often discussed whether the scaling law should hold over many decades of the x-
axis variable, -whatever the x-axis (reduced temperature ε, bin size n, rank r, ...). Officially, 
this "many decades validity" should be the case, if a scaling law fully holds. However, 
phenomena for which (quasi) straight lines are seen on a log-log plot are rarely found, - 
outside laboratories or computer simulations. Yet, there is no harm in recognizing that such 
a straight line existing on a small x-axis range indicates the presence of a specific regime; 
see for example the case of the population size of large italian cities, as illustrated in Fig. 1, 
for which two regimes rather than a single one can be imagined. Therefore, weak scaling 
can be accepted as physically suggestive within finite x-axis ranges. 
 Nevertheless, the data can often present convex or concave shapes, and often gaps, 
jumps, drops (see Fig. 1) or shoulders. Such a large variety of basic shapes demands to 
pursue some systematic inquiry of the simplest appropriate analytical forms representing 
complicated data. Much difficulty resides in (interpreting and) theoretically manipulating 
inflection points, - often visible when a line is drawn through the data "for the eye". 
 The 2-parameter free power law (using thereafter the discrete variable r for the x-
axis) 

ݕ					  ൌ


∝
																																																																																																																														(1) 

on a log-log plot is referred to Zipf's plot. Zipf had thought that the particular case α= 1 
represents a desirable situation, in which forces of concentration balance those of 
decentralization [3, 4]. Such a case is called the rank-size rule [4]-[8]. Thus the scaling 
exponent a can be used to judge whether or not the size distribution is close to some 
optimum (equilibrium) state. 
 

Figure 1: The 384 largest Italian cities ranked by decreasing order of their population size, 
pointing to a drop after the main 6; different power law fits for the whole range (black line) 
or when distinguishing two regimes (red and blue line) are indicated with their 
corresponding correlation coefficient R2 
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 The pure power-law distribution, for a continuous variable, reads  

ሺ݇ሻ ൌ
షം

ሺఊሻ
  (2) 

 where k is a positive integer usually measuring some variable of interest; p(k) is the 
probability of observing the value k; ߛ is the power-law exponent; and ߞሺߛሻ ≡ ∑ ݇ିఊஶ

ୀଵ  is the 
Riemann zeta function; note that ߛ, in Eq.(2) must be greater than 1 for the Riemann zeta 
function to be finite. 
 However, the fit to a straight line on a log-log plot is not always truly perfect, as any 
reader has surely had the experience considering various data with expected scaling. The 
error bar (e.g., on ߛ) can be very large for a R2 or ߯ଶ test point of view. Moreover, broadly 
used methods for fitting to the power-law distribution provide biased estimates for the 
power-law exponent [9]. 
 The deviations occur in various regimes along the log(x)-axis. 
When the data crushes at high x-axis value, Lavalette suggested [10] to use the 2-parameter 
free (ߢ, ߯) form 

ሻݎሺݕ       ൌ ߢ ቂ
ே	

ேିାଵ
ቃ
ିఞ
																																																																																																									(3) 

in which the role of r as the independent variable, in Eq.(1), is taken by the ratio r/(N — r 
+1) between the descending and the ascending ranking numbers; N is the number of data 
points on the x-axis, and ߯ ≥ 0; the +1 role in (N — r + 1) is easily understood. Other ways 
of writing this 2-parameter Lavalette form function are of interest 

yሺrሻ 	ൌ 	 K	ሺܰ	r/ሺN	— 	ݎ	  	1ሻሻିஎ 	≡ 	݇	ܰିఞ	ሺr/ሺN െ 	ݎ	  	1ሻሻିఞ (4) 
 ≡ 	݇	ሺܰ	ݎሻିఞ	ሺN െ 	ݎ	  	1ሻାఞ	 (5) 

 ≡	 ݇	ିݎఞ	ሺN െ 	ݎ	  	1ሻା. (6) 
 in order to be emphasizing a power law decay with a power law cut-off. The interest 
in such a function which is strictly decreasing, Fig.2, from infinity at r = 0 under a ିݎఞ law to 
a zero value at r = N +1 as	ሺܰ െ 	ݎ	  	1ሻାఞ, best appears on a semi-log plot, Fig. 3: observe 

the inflection point presence at r = N/2. The slope s at such a point is equal to – 4	߯ ேାଵ

ேሺேାଶሻ
  

which for "large r" ~ – 4	߯ (1/N)(1 — 1/N). In some sense, it is realistic to reproduce this 
intermediary regime as y ~ e-sr. 
 When ߯ ≤ 0, - not a rank-size rule case, the function is increasing, - it is a flipped 
Lavalette function. Both functions, i.e. with ߯ ≥ 0 or ߯ ≤ 0, are shown in Fig. 2 on a log-log 
plot, - where the shape is apparently simple, i.e. a power law followed by a sharp cut-off 
indeed, and on a semi-log plot in Fig. 3, where the shape is "more trivial". On a semi-log 
plot, Eq.(3) with ߯ ≤ 0, gives a flat N-shape "noid" function (which could be called a "reverse 
sigmoidal") near its inflection point, which with the correspondingly flat S-shape, but 
nevertheless called "sigmoid" function, allows to cover various convex and concave data 
display shapes1. 

                                                 
1 Recall that these functions/shapes are found in laboratory when measuring the (I,V) characteristics of junctions or 
diodes; they present an N or S shape, beside the Ohm law. The sigmoid or noid form are also describing 
speculator's different strategies on the stock market [11] . 
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Figure 2: Lavalette function, Eq.(4) with either	߯ >0 (red dots) or < 0 (blue dots) on a log-
log plot, for N = 100 and Kො = 106 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

Figure 3: Lavalette function, Eq.(4) with either	߯ >0  (red dots) or < 0 (blue dots) on a semi-
log plot, for N = 100 and Kො  = 106, emphasizing the inflection points at r = N/2 
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Figure 5: Display of types of sigmoid functions (invtan(x) and tanh(x)) on log-log axes 
 
 No need to recall that other often seen (or used) 2-parameter free (amplitude and 
slope at inflection point) have a sigmoid shape; they are tanh(γx) and and invtan(γx). There 
is of course no need to represent such well known functions on classical graphs. They are 
rarely seen, thus shown on semi-log and log-log plots in Figs. 4-5 respectively. The functions 
have been adapted and scaled in order to read them on appropriate graphs, for comparison 
with other functions2. A technical point is in order here. Note that N (as a factor of r, e.g. in 
Eqs.(3-4) is not really needed. In fact it is more usefully replaced, at fit time, by some simple 
factor having the order of magnitude of y(N/2). This was made in Fig.6, for example. The 
Aggregated Income Tax of the 43 cities in the province of Agrigento (AG) in Italy was ranked 
in decreasing order, for each available year in [2007-2011], from the Italian Minister of 

Economy, and fitted by an adapted simple Lavalette law, i.e. K107 ൣݎ/ሺ43	— 	ݎ	  	1ሻ൧
ିఞ

. Note 

the high regression coefficient values, but a not so visually pleasing fit at high rank. 
 Finally, considering cut-offs at high rank, there is on the contrary not much 
discussion in the literature on the wide flattening of the data at high rank, - although such 

                                                 
2 It should be obvious to the reader that all these S or N shape functions can occur on different types of plots. 
The question is whether it can be trivially made x → log(x), whether this "transformation" has any impact on data 
analysis, and whether some theoretical hypothesis can sustain/justify such a transformation. 

 
        0          0.2 0.4       0.6         0.8          1 
      X 
Figure 4: Display of types of sigmoid functions (invtan(x) and tanh(x)) on semi-log axes 
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cases are encountered, e.g. in co-author ranking [12, 14, 15, 16, 17], and in other "very 
long flat tail" cases. 
 For completeness, other 2-parameter free simple functions are recalled in Sect. 5. 
 

2. A FEW 3-PARAMETER FREE FUNCTIONS 
 
 Having, introduced well known 2-parameter free functions, to represent complicated 
data, let us turn on functions with 3 (or more, see below) free parameters, toward 
elaborating an attempt on how to take into account deviations from simple data 
approximations by power law-like lines. 
 
2.1. Logistic or Verhulst function 
 For completeness, recall that the 3-parameter (σ, y, and r/2 ) sigmoid forms are 
well represented through the usually called Verhulst logisitic [18] 

ሻݎሺݕ                    ൌ ௬ಾ

ଵାష∗ሺೝష
ೝಾ
మ ሻ

                                             (7) 

based on the exponential (growth) function, but invented for limiting the maximum value 
which such a growth function can reach. This well known function does not need to be 
shown on an ordinary scale graph. The function is topologically similar to tang(γ x) and 
invtan(γ). However it is unusual to see this sigmoid function represented or n log-log plot or 
on semilog plots, whence this is shown in Fig. 7 and Fig. 8, for different σ* values (with rM 
=100), pointing to non-trivial shapes, -also different to those on Fig. 4-5, as the reader can 
usefully observe by him/ herself.  

Figure 6: Basic 2-parameter free fit Lavalette law to the Aggregated Income Tax (ATI) of the 
N=43 cities, ranked in decreasing ATI order, in the province of Agrigento, IT, for recent 
years. Note the high regression coefficient, but not the visually pleasing fit at high rank (r ≥ 
22) 
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Figure 7: Logistic function, Eq.(7), on semi-log axes 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
Figure 8: Logistic function, Eq.(7), on log-log axes similar to tanh(γx) and invtan(γx). 
However, it is unusual to see this sigmoid function represented on a log-log plot or on a 
semi-log plots; whence this is shown, in Fig. 7 and Fig.8, for different ߪ∗ values (with 
rM=100), pointing to non trivial shapes, - also different from those on Figs. 4-5, as the 
reader can usefully observe by himself.. 
 
 Interestingly, and "obviously", it can noted that some data which could be 
represented by the Verhulst logisitic, Eq.(7), can be transformed through a simple 
combination, ሾݕሺݎሻ/ሺݕெ െ  into some Y(r) which is ≡e^(-σ*(r-r_M/2)). Therefore a	ሻሻሿ,ݎሺݕ
semi-log plot of Y(r) vs. r expectedly leads to a graph with a straight slope from which 
parameters can be easily deduced [19]; practically, ݕெ can be used as an appropriate input 
parameter to optimize the fit. 
 
2.2. Zipf-Mandelbrot function 
 When the data upsurges at low rank (r ~ 1), on a log-log plot, as in [20], one 
mentions a "king effect" [21], apparently first emphasized in city population size distributions 
[20]. When the data flattens, below the expected straight line, at low r values, when a so 
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called "queen effect" occurs [12], it is best to modify Eq.(1) into a 3-parameter free form, 
called the Zipf-Mandelbrot-Pareto (ZMP) law [13], which reads 
         y(r) = ܿ̂/(ߟ + r)ζ ≡ ሾܿ/ሺߟ   ሻሿ,                               (8)ݎ
since obviously y(0) takes a finite value. The value ߟ is understood as a measure of the 
"harem" [14], - as seen in co-authors of papers distributions. 
 
2.3. Generalized 2-exponent Lavalette function 
 There is no reason for which the behavior near the crushing point be of (analytically) 
identical type as the vertical asymptotic behavior at low rank. The basic 2-parameter 
Lavalette form Eq.(3) can be generalized as a 3-parameter free form [22] 
 e.g. allowing two exponents (߯ and ߦ): 
 

ሻݎேሺݕ																																																																				 ൌ ߢ
ሺே	ሻషഖ

ሺேିାଵሻష
                                             (9) 

which is emphasizing the number of data points as in Eq.(3), but can be simply written 
 

ሻݎሺݕ				 ൌ Λ
ሾሿషഝ

ሾேିାଵሿషഗ
≡ Λሾݎሿିథሾܰ  1 െ  ሿାట        (10)ݎ

                             ≡ Λሾܰ  1ሿటିథ ቂ


ேାଵ
ቃ
ିథ

ቂ1 െ	


ேାଵ
ቃ
ାట

         (11) 

                             ≡ Λିݑథሺ1 െ  ሻାట                                 (12)ݑ
 
 In fact, the case ߶ > 0 and ߰ < 0 is the Feller-Pareto function. The case ߶ = -1  and 
߰ = +1 is the Verhulst function introduced in the right hand side of the (logistic) evolution 
differential equation. 
 However, interestingly, in Eq.(10), both exponents, among the 3-parameters, can 
take several signs, whence graphical forms can be quite different, as seen in Figs.9-11 
shown on the three types of plots. 
 • but also admitting the same exponent ߯, on both tails, but changing the range, 
leaving free N1 instead of imposing a predetermined (N + 1), - of course imposing Nl - r > 
0, i.e. 

ே(r) = K ቂݕ																																 ே	

ேభି
ቃ
ିఞ

≡ ݇ሾܰ	ݎሿିఞሾ ଵܰ െ  ሿାఞ,                      (13)ݎ

thus somewhat in the sense of Mandelbrot modification of Zipf law, but at high rank here. In 
analogy with the theory of critical phenomena [1], one would consider Nl as the "critical 
range", - analogous to a "critical temperature". One variant of Eq.(13) is merely equivalent to 

a simple redefinition of ߢ: ݇ ≡ ିܰߢఞ . Note again that the role of N as a factor of r makes "no 
practical sense". Technically, for optimizing the data fits, it is better to scale the right hand 
side of such relations, e.g., by a factor 10m, m obtained, in terms of the order of magnitude 
of y. 
 

3. GENERALIZED 4-PARAMETER FREE LAVALETTE FUNCTION 
 
 The modification made in Eq.(13) suggests to apply the Mandelbrot modification also 
at low rank, in Eq.(9), when there is some flattening of the data at low rank, i.e., one 
introduces the a similar ZMP trick, as in Eq.(8) on Lavalette function. such that 
 combining Eq.(8) idea with the form of Eq.(3), (note that it is different from Eq.(13)), - here 

keeping the same "names" for the parameters: 
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ሻݎேሺݕ																							 ൌ ݇
ேషഖሺାሻషഖ

ሺேିାଵሻష
≡ ݇ሾ݉  ሿିఞሾܰݎ െ ݎ  1ሿାక                           (14) 

 another 4-parameter free generalized Lavalette function would be 

ሻݎேሺݕ																																																						 ൌ ݇
ேషഖሺሻషഖ

ሺேିାሻష
≡ ݇ሾݎሿିఞሾܰ െ ݎ ݉ሿାక                      (15) 

 still a 4-parameter free generalized Lavalette function would be 
 

ሻݎேሺݕ																					 ൌ ݇
ேషഖሺାሻషഖ

ሺேିାሻష
≡ ݇ሾ݉  ሿିఞሾܰݎ െ ݎ ݉ሿାక                        (16) 

 
 
 Data 23basicFellerPareto 

 
Figure 9: Feller-Pareto function, y(r) = ݎథሺ1 െ  but extended to allow different signs	ሻିట,ݎ
(and possible values) for ߶ and ߰; for readability the amplitude of the ߶ = -1 and ߰ = +1 
case has been multiplied by a factor 16 as pointed out by (*). 
 
These differ from a generalization [23, 24] based on a Zipf-Mandlebrot function. 
 

4. GENERALIZED 5-PARAMETER FREE LAVALETTE FUNCTION 
 
 "Finally", and rather generally a 5-parameter free function is "obviously" in order: 
 

ሻݎேሺݕ								 ൌ ݇
ேሺାሻషഖ

ሺேିାሻష
≡ ݇ሾ݉  ሿିఞሾܰݎ  ݊ െ  ሿିାక                                (17)ݎ

 
 No graph illustrates this super-generalization; a simple combinatory calculation 
indicates that one would ask for ten of them. It is better to suggest to envisage such a form 
when those with a lower number of free parameters do not lead to satisfactory or successful 
fits. It seems that one can rather easily understand the effect of the new parameters when 
examining the functions. 
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5. A FEW OTHER FORMULAE FOR FITS 
 
 For completeness, recall a few other often used formulae for fitting data (often) on 
log-log plots. 
 
5.1.  2 parameters 
 Beside the power law, Eq.(1) and the basic 2-parameter Lavalette form Eq.(3), one 
should mention 
 - the (2 parameter) exponential case 
 y(r) = b ݁ିఉ      (18) 

- a law suggested by Tsallis and de Albuquerque3 (for ranking paper citations) [25] 

ሻݎሺݕ																															 ൌ
థ

ሾଵାሺటᇲିଵሿ	୪୬	ሺሻሻഗ
                                               (19) 

with ߰ᇱ ≡ ߰, although there does not seem any reason why it should be so. 
 

 
Figure 11: Feller-Pareto function, y(r) = ݎథሺ1 െ  ሻିట on a log-log plot, but extended toݎ
allow different signs (and possible values) for ߶ and ߰; for readability the amplitude of the ߶ 
= -1 and ߰ = +1 case has been multiplied by a factor 16 as pointed out by (*) 
  

                                                 
3correcting a misprint in [23]. 

 
Figure 10: Feller-Pareto function, y(r) = ݎథሺ1 െ ሻିట, on a semi-log plot, but extended toݎ
allow different signs (and possible values) for ߶ and ߰; for readability the amplitude of the ߶
= -1 and ߰ = +1 case has been multiplied by a factor 16 as pointed out by (*) 
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 - the log-normal distribution [26], 

ሻݔሺݕ													 ൌ
ଵ

௫ఙ√ଶగ
exp ቀെ	

ሺ୪୬	ሺ௫ሻିఓሻమ

ଶఙమ
ቁ																																													 (20) 

where x > 0, ߤ and ߪ are the parameters, mean and standard deviation of the log of 
"variable" in the data distribution. 
 
5.2.  3 parameters 
 Beside the Verhulst logistic form, Eq.(7) and the Zipf-Mandelbrot-Pareto (ZMP) law 
[13], Eq.(8), other often used 3-parameter statistical distributions, generalizing the power 
and/or exponential law are to be examined : 
 - the Yule-Simon distribution, i.e. a power law with exponential cut-off [27] 
(the free parameters are: d, ߙ, and ߣ) 
  y(r) = d ିݎఈ݁ିఒ																																																									(21) 
 - the stretched exponential [21] (the free parameters are: ߠ,  (ߥ	݀݊ܽ	ߤ

  y(r) = ݎ ߠఓିଵ݁ିఔ	
ഋ
																																																					(22) 

 - the Gompertz double exponential [28] (the free parameters are: g1, r2, and g3) 

 y(r) = ଵ݃݁ି
షሺೝషೝమሻ/య 												                           (23) 

 These functions also bend in convex form on a log-log plot. 
 
5.3. 4 parameters 
 There are several possible generalizations of the above, often introducing the 
Mandelbrot trick, at low rank, i.e. r → r + ߩ, with a possibly different ߩ at high and low 
ranks, but they do not seem of major interest. Indeed, look at 
 - a ZMP4 form, e.g., 
 y(r) = m3/ሺ݉ଶ ݉ସ	ݎሻሿ,	                                         (24) 
which obviously reduces to Eq.(8) by a trivial change in the parameter notations, e.g. ݉ଷෞ  → 

m3/mସ
 ≡ c, and m2/m4 ≡ η, 

- or 
 y(r) = ݉ଷሺݎ െ݉ସሻିభ݁ିమሺିరሻ																																												(25) 
with m4 ≡ to some r0, which it is nothing else that 
                            y(r) = ݉ଷෞሺݎ െ݉ସሻିభ݁ିమ																																										ሺ26) 
  
 Usually such functions reproduce one tail but not the other. Technically, such 
improvements do not change in a dramatic way the regression coefficient, since the high 
rank tail does not have a great impact upon this coefficient, - because of the change in the 
order of magnitude between the low and high rank regions. 
 

6. HYPERGENERALIZED (LAVALETTE) FIT FUNCTIONS 
 
 It might be reminded that the modification of Keynes differential growth equation by 
Verhulst through a (1 - x) term was purely a mathematical ad hoc mean to avoid a full 
exponential growth. There is no economic or demographic argument to use a linear (1 - x) 
term; a quadratic term (1 - x2) or any other polynomial decaying near x = 1 or many more 
complicated terms could be used. Therefore,considering that the basic phenomena might not 
necessarily depend linearly on r, but the rank-size rule should (or could) contain higher order 
terms, other generalizations may come in mind within the present considerations. One such 
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a case was found in considering city sizes (in Bulgaria, e.g. [29, 30]), but might occur more 
frequently than "expected", - however are likely not reported because of missing framework. 
Therefore, a hypergeneralization of Lavalette function can be imagined: 

 
 
 
 
 
 
 
 

 
 
 
 
 
 

Figure 14: Hypergeneralized Feller-Pareto function, y(r) =ݎథሺ1 െ  ଶሻିట, on a log-log plotݎ
 
 
 
 

 
Figure 12: Hypergeneralized Feller-Pareto function, y(r) = ݎథሺ1 െ ;ଶሻିట, on ordinary axesݎ
(*) indicates that the function has been multiplied by a factor 16 for better readability 
 

 
Figure 13: Hypergeneralized Feller-Pareto function, y(r) = ݎథሺ1 െ ;ଶሻିట, on a semi-log plotݎ
(*) indicates that the function has been multiplied by a factor 16 for better readability 
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 the 3-parameter generalized Lavalette form [22] can be hypergeneralized into 
 

ሻݎሺݕ ൌ
ሾΛ	ݎሿିథ

ሾܰ  1 െ	ݎሿିట
		ݎ			 ൌ Λ

ሾݎሿିథ

ሾܰ  1 െ	ݎሿିథ
																																			ሺ27ሻ 

 
 the 4-parameter generalized Lavalette form [24] can be hypergeneralized into 

ሻݎሺݕ ൌ
ሾΓ	ሺݎ  ሻሿିఎߥ

ሾܰ െ ݎ  ሿିߥ
		ݎ			 ൌ Γ

ሾݎ  ሿିఎߥ

ሾܰ െ	ݎ  ሿିߥ
																																				ሺ28ሻ 

 
 the 5-parameter supergeneralized Lavalette form (also) can be hypergen - eralized into 

ሻݎሺݕ ൌ
ሾΓ	ሺݎ  ሻሿିఎߤ

ሾܰ െ ݎ  ሿିߥ
		ݎ			 ൌ Γ

ሾሺݎ  ሻሿିఎߤ

ሾܰ െ	ݎ  ሿିߥ
																																			ሺ29ሻ 

 
 
Note that variants : [(rn + ߥ)] → [(r + ߥ)n], and [(rn+ ߤሻሿ 	→ 	 ሾሺݎ   [(ߥ - rm)] ሻሿ, with or withoutߤ
→ [(r - ߥ)m], can be written. The writing choice is left for fit optimization 
 

7. ON INFLECTION POINTS ON LOG-LOG PLOTS 
  
 Finally, not the least, the above formulae have much emphasized possible fits which 
indeed allow inflection points on semi-log graphs, but have left opened the case of inflection 
points on log-log graphs. Let it be understood that such a case occurs when some power law 
decay ("from infinity") at low rank is followed by another intermediary regime before some 
cut-off occurs at high rank. A trivial transformation x → log(x) of all the above formulae is 
possible, but demands much reflection. Indeed, one could transform the basic Lavalette 
equation to read 

ሻݎሺݕ																			 ≃ ቈ
ܰ logሺݎሻ

ܰ  1 െ logሺݎሻ

ିఞ

																																																				ሺ30ሻ 

and similarly all others. But it remains to be done some interpretation and much theoretical 
work ! 
 Another possibility comes from realizing that if there is an inflection point, the slope 
has the same (negative) sign for the whole r range, but the derivative of the slope has some 
structure, i.e.allowing for a concave to a convex shape of the approximation to the data. The 
intermediary regime can also be considered in a first approximation to be a scaling law. The 
high rank regime can be either a Lavalette cut-off or an exponential cut-off. Therefore the 
following functions can be appropriately imagined 
 in its most generalized form, with power law cut-off 
                   y(x) = ሾܣሺݔ ݉ହሻିభ  ݔሺܤ  ݉ሻିమሿሺܰ ݉ସ െ  ళሻయ                     (31)ݔ
 or with an exponential cut-off 

                        y(x) = ሾܣሺݔ  ݉ହሻିభ  ݔሺܤ ݉ሻିమሿ݁
ି

య	ሺೣశర
ళ                            (32) 

 A few of such cases are shown in Figs.21-22 demonstrating the interest of such 
forms in order to discuss inflection points on log-log plots. 
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8. APPLICATIONS 
 
 This section serves as an illustration of a few cases discussed above, displaying some 
data on either semi-log or log-log plots for comparison. However the data pertains to some 
empirical study requesting a brief introduction. In so doing, it is hoped that the "universality" 
of the approach receives a positive argument. 
 Consider the following investigation. In Italy, 638 cities contain a saint or an angel 
name, as counted after translating the names into italian, from french, german, or local 
dialects (like Santu Lussurgiu = Santo Lussorio, or Santhia who is Santa Agata), Note that 
Sant'Angelo (24 times), San Salvatore (5 times) or Santa Croce (7 cities), and similar 
"concepts" (Sansepolcro) are not counted. Some distinction can be made between male and 
female saints. Note that two cities have a name with two saints. The name of the saints can 
be ranked according to their frequency [31] and an appropriate statistical analysis can follow 
for the rank-frequency distribution. 
 However, one can also ask, as did Pareto in 1896, how many times one can find an 
"event" greater than some size n, i.e. study the size-frequency relationship. Pareto found out 
that the cumulative distribution function (CDF) of such events follows an inverse power of n, 
or in other words, P [N > n] ~݊ିఠ., - whence the frequency f of such events of size n, (also) 
follows an inverse power of n. 
 Thus, one can count how many cities have a happax hagionym, how many cities 
have a name with a saint occurring only twice, etc. up to how many cities have a name 
associated to the "most popular" (= most frequent) saint ( San Pietro). This counting is 
normalized and turned into a probability distribution, i.e. CDF(n). The data is illustrated in 
Figs. 15-20, either with semi-log or log-log plots, and fits with a Zipf-Mandelbrot or 
Lavalette function. 
 Short final comments: (i) two "queen effects" and a "king effect" are well seen on Fig. 
16; (ii) the CDF shows a pronounced cut-off at high n in all cases. Therefore, it could be 
argued that the CDF is less pertinent to observe minute effects. This is understandably true, 
since the CDF results from an integration scheme. However, again understandably, the CDF 
fits are much more stable. No need to say that one should not report too precise parameter 
values, since these are non linear fits; a final technical information: the Levenberg-
Marquardt algorithm was used. 
 

9. CONCLUSIONS 
 
 It has been shown that semi-log plots are of interest in order to analyze whether 
experimental or empirical data are underlined by some scaling argument for the 
observed/examined phenomenon at hands. The fit to a straight line on log-log plots is not 
always satisfactory indeed. Deviations occur at low, intermediate and high regimes along the 
x-axis. Several improvements of the mere power law fit have been discussed, in particular 
through a Mandelbrot trick at low rank and a Lavalette power law cut-off at high rank. 
 In so doing, the number of free parameters increases. Their meaning has been 
discussed, up to the 5 parameter free super-generalized Lavalette law and the 7-parameter 



  

 
15

free hyper-generealized Lavalette law4 . It has been emphasized that the interest of the basic 
2-parameter free Lavalette law and the subsequent generalizations resides in its "noid" (or 
sigmoid, depending on the sign of the exponents) form on a semi-log plot; something 
incapable to be found in other empirical law, like the Zipf-Pareto-Mandelbrot law. The 
connection with other laws, e.g. Feller-Pareto and Verhulst logistic laws, as been pointed out. 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
Figure 15: Semi-log plot of the cumulative distribution function (CDF) of the frequency of 
Italian cities containing a saint name n-times, so called "size", given according to the Zipf-
Mandelbrot-Pareto function, like Eq.(8), distinguishing between male (n_m) and female (n_f) 
saint names; the fit parameter values are given in Fig.16. Observe the need for a cut-off at 
high rank/size. 

 
 
 
 
 
 
 
 
 
 
 
 

Figure 16: Log-log plot of the cumulative distribution function (CDF) of the frequency of 
Italian cities containing a saint name n-times given according to the Zipf-Mandelbrot-Pareto 
function, like Eq.(8), distinguishing between male (n-m) and female (n-f) saint names; observe 
that ߟ is negative for the female case, pointing to a king effect (Santa Maria), and queen 
effects, since 0 ≤ ߟ, for the males and the overall distribution. Observe the need for a cut-off 
at high rank/size. 

                                                 
4In this conclusion, one could recall that 6 or 7-parameter free functions are also used for fitting data like in 

financial market crash predictions [32, 33, 34, 35, 36] or in earthquake predictions [37] 
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Figure 17: Semi-log plot of the cumulative distribution function (CDF) of the frequency of 
Italian cities containing a saint name, given n-times, so called "size"; fit according to a 
Lavalette function with 3 free parameters, Eq.(10), for the distribution of all such 36 
cities(black line) or only those 36 with a male saint name (n_m; red line); the parameter 
values for the female case are given in Fig.18, with the corresponding fit. Observe the 
interest of leaving the high rank/size value be a free parameter, as on Fig.19 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
Figure 18: Log-log plot of the cumulative distribution function (CDF) of the frequency of 
Italian cities containing a saint name given n-times, so called "size"; fit according to a 
Lavalette function with 3 free parameters, Eq.(10) is shown for the distribution of only those 
13 cities with a female saint name (n_f; blue line); the parameter values for the male case 
and the whole distribution are given in Fig.17, with the corresponding fits. Observe the 
interest of leaving the high rank/size value be a free parameter, as on Fig.20. 
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Figure 19: Semi-log plot of the cumulative distribution function (CDF) of the frequency of 
Italian cities containing a saint name given n-times, so called "size"; fits with a 4 parameter 
free Lavalette function, Eq.(15) are shown for the distribution of all such 36 cities (black line) 
or only those 36 with a male saint name (n_m; red line); the parameter values for the 
female case are given in Fig.20, with the corresponding fit. 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
Figure 20: Log-log plot of the cumulative distribution function (CDF) of the frequency of 
Italian cities containing a saint name given n-times, so called "size"; fit according to a 
Lavalette function with 4 free parameters, Eq.(15) shown for the distribution of only those 13 
cities with a female saint name (n_f; blue line); the parameter values for the male case and 
the whole distribution are given in Fig.19, with the corresponding fits. 
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Figure 21: Display of a "simple" function with inflection point on a log-log plot, allowing for 
fit to data with large king or queen effect and power law cut-off, i.e. with an inflection point 
in the middle range, as approximated by a simple function for which the general form is 
Eq.(31). 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
Figure 22: Display of a "simple" function with inflection point on a log-log plot, allowing for 
fit to data with large king or queen effect and exponential cut-off, i.e. with an inflection point 
in the middle range, as approximated by a simple function for which the general form is 
Eq.(32). 
 
 It has been shown that the additional parameters introduced into the basic Lavalette 
function, Eq.(3), facilitates a rather good reproduction of rank-probability distribution in the 
ranges of small and high rank values. Indeed, each parameter or ratio involved in the 
suggested modification of Lavalette function, Eq.(3), enhances the fit in different ranges of r. 
 It has remained for completeness to invent a simple law showing an inflection point 
on a log-log plot. Such a law could have been the result of a transformation of the Lavalette 
law through x → log(x), but this meaning is theoretically unclear. It has been shown that a 
simple linear combination of two basic Lavalette law  provides the requested features. 
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Generalizations taking into account two super-generalized or hyper-generalized Lavalette 
laws are suggested, but need to be fully considered at fit time on appropriate data. 
 A few examples are used for illustrating various points, like deviations or visually 
unattractive fits, - though the regression coefficient R2 is often quite satisfactory looking. 
Examples have been taken mainly for rank-size rule research. However, in order to 
demonstrate a larger validity of generalizing the usual fit formulae, and some interest for 
generalizing the basic concepts, some short analysis has been presented of the cumulative 
distribution function (CDF) of the city names in Italy containing a (male or female) saint 
name. 
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