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Abstract 
As an important tool in risk management, Value-at-Risk is estimated on the Romanian stock 
market based on single assets and a weighted portfolio of them. Because this is a measure of 
the extreme tails, several approaches are used to compute Value-at-Risk by taking in 
consideration the distribution of the data, namely the generalized hyperbolic distribution, 
Normal-Inverse Gaussian and asymmetric t-Student in comparison with the normal 
distribution. The considered period is divided into an analyze period and a test one, where 
based on the rolling windows approach are estimated the VaR values and then tested with the 
help of Kupiec’s and Christoffersen’s backtests. The choice of the time period affects the 
estimation due to the events that took place on the market and the approach based on the 
normal distribution predicted best the VaR values by underestimating the risk compared to the 
other distributions. This approach fits better the considered period because the analyzed 
period covers moments of severe economical crisis while the test period goes over a period of 
recovery. 

 

Keywords: Value-at-Risk; generalized hyperbolic distributions; heavy tails;  

stock market data 
 

1. Introduction 
 

The instability of financial markets in the recent years has led to the need of a 
general accepted measure that quantifies risk of the loss when looking to invest or holding a 
portfolio. This measure of risk management has known various forms over time. A measure 
accepted and used both in practice and theory is value-at-risk (VaR). VaR was easily 
accepted for two reasons: the ease of computations and the weight of the information 
brought by a single number. 

As defined by J.P. Morgan (1996), VaR represents “a measure of the maximum 
potential change in value of a portfolio of financial instruments over a pre-set horizon. VaR 
answers the question: how much can I lose with x% probability over a given time horizon?”. 
In other words, VaR defines through a single number the maximum loss we should expect 
over a period of time except for x% of the cases, when the loss can exceed VaR. Due to this 
two inconveniences, the arbitrary choice of the probability and of the time interval, authors 
like Einhorn (2008) consideres VaR as being inefficient because it ignores mainly those x% 
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extreme situations, which represent the highest looses and compares the method with “an 
airbag that works all the time, except when you have a car accident”. 

Prause (1997) used the family of generalized hyperbolic distributions to model the 
returns of the German stocks and US index and based on them evaluated the risk of loss 
corresponding to each of the two markets. The analysis revealed that the family of 
generalized hyperbolic distributions provide a better fit to the empirical VaR. Bauer (2000) 
performed VaR computations on German stocks and DAX, Dow Jones and Nikkei market 
indexes over 1987- 1997 and found that the symmetric hyperbolic distribution outperforms 
the normal model. Huang et al. (2014) evaluated the performance of the hyperbolic 
distribution, Normal- Inverse Gaussian and asymmetric t- Student through VaR estimates on 
daily JSE Mining Index. All distributions outperformed the normal one both through means of 
goodness-of-fit and VaR estimates. 

To overcome the shortcomings of the method, in this study are used daily returns 
and are applied several methods to compute VaR by taking into consideration the 
distribution of the returns. VaR estimates are computed using the rolling window approach 
and the performance of each method is tested through backtests.  As shown in Prause 
(1999), Sognia and Wilcox (2014), Baciu (2014), appropriate distributions in modeling 
financial data are the generalized hyperbolic distribution or Normal- Inverse Gaussian 
distribution which account for the heavier tails and asymmetric distribution that characterize 
stock market returns. Although Vee et al. (2012) concluded that one specific distribution 
won’t describe well indices from different markets and the choice of the distribution depends 
on the market, the performance of the generalized hyperbolic distribution on the index of 
the Romanian market was shown in Necula (2009) or Baciu (2014).  This study uses the 
findings of Baciu (2014) in modeling financial returns and fitting the distribution to data, 
which show that the generalized hyperbolic distribution approximates the best the 
distribution of the returns of the five Romanian Investment Funds, followed by the Normal- 
Inverse Gaussian and asymmetric t-Student distributions. The purpose of this paper is to 
develop the previous study, in which the performance of each distribution was characterized 
through plots and goodness-of-fit means and focus on the distribution of the tails.  
The remainder of this paper is organized as follows. Section 2 links the study with a previous 
research in which has been shown the performance of the generalized hyperbolic 
distribution on Romanian stock data in comparison to the normal distribution. Section 3 
provides a description of the methodology used to compute VaR and the backtests of the VaR 
estimates. Section 4 introduces the data and presents the descriptive statistics of it. The VaR 
estimates and the results of the backtests are discussed in Section 5. Finally, Section 6 
concludes the paper with the main findings and directions to develop the study.  
 

2. Choice of the distribution 
 

As documented in Baciu (2014), among the distributions that approximate well 
stock market returns is the family of the generalized hyperbolic distributions. Studies such as 
Prause (1997), Necula (2009), Rege and Menezes (2012), Sognia and Wilcox (2014) have 
shown the performance of this family of distributions. Because VaR accounts only for the 
tails, such a distribution should be more appropriate than the normal one to estimate the 
potential risk of loss. Based on the results in Baciu (2014) on the same data set as in the 
present paper, VaR will be computed on three of the generalized hyperbolic family of 
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distributions: the generalized hyperbolic distribution, Normal- Inverse Gaussian and 
assymetric t- Student. The parameters of these distributions are estimated using the 
maximum likelihood estimation, implemented based on the EM scheme of Dempster et al 
(1977) in R software. 
For a vector of observations ݔଵ, ,ଶݔ … ,  , the maximum likelihood estimation of theݔ
parameters ߣ, ,ߙ ,ߚ ,ߜ  :is obtained by maximizing the log-likelihood function	ߤ
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In the previous study, the choice among distributions was done based on plots and 
goodness-of-fit measures: Kolmogorov-Smirnov distance, Log-likelihood and Akaike 
Information Criterion. From the beginning, plots ruled out the Variance-Gamma distribution 
and have shown that the family of the generalized hyperbolic distributions offers a better 
and more appropriate fit to the Romanian market data than the normal distribution. Based 
on the goodness-of-fit measures, the generalized hyperbolic distribution seems to represent 
the best fit to the given data. 
 

3. Methodology 
 
3.1. VaR estimation methods 

The VaR methodology has been easily adopted and accepted both in theory and 
practice due to the ease of implementation and interpretation. Among the most popular 
methods of computing VaR can be mentioned the methods based on the historical data, 
Monte Carlo simulations or the assumption of normal distribution.  

A survey realized by Perignon and Smith (2006) has shown that 73% of the 
interogated banks are using the historical method for computing the risk of loss. This method 
estimates the future loss based on past returns. Besides its simplicity, among the benefits of 
this method is that it allows for skewed and leptokurtic distributions of data. On the other 
side, the method takes into consideration only events that took place in the analyzed period 
of time and can not capture the effect of any other type of events. If the analyzed period has 
gone only through low fluctuations of volatility, then the computed loss will be too small in 
case the fluctuations grow.  

The normal VaR estimation method assumes a normal distribution of the returns. 
But it is a known fact that equity returns exhibit heavier tails than in the case of the normal 
distribution. To avoid the shorcomings of the normal VaR method, it was introduced the 
Cornish-Fisher method, described in Favre and Galeano (2002) which accounts for 
distributions other than the normal one by considering the third and fourth moments. 
If it is considered  
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where S stands for assimetry ,  K for excess kurtosis, p the selected probability level and Qp 
the corresponding quantile to the selected probability level, then, through the Cornish- 
Fisher method, VaR reduces to: 

ܸܴܽி ൌ െ݉݁ܽ݊ሺܴሻ െ  .ܨܥߪ√

Brown (2008) comments on the performance of VaR and sustains that the results 
are trustful only if they are backtested. For this reason, in this study data is divided into an 
analyze period and a test one. As sugested by Brown (2008), for a considered probability of 
1% greater looses than estimated by VaR for daily returns, the analysis should be performed 
on 3 years of historical data.  

Each VaR is computed based on a rolling windows approach on 750 historical daily 
returns, counting for about three years of daily trading data. Data is divided into two periods 
of time: an analysis one and a test one. The analysis period represent the windows of the 
rolling windows approach and at each step the oldest return is dropped and added the 
return of the following day of the last observation included in the previous window. The test 
period accounts for the remaining data of more than two years of tradings. Over this period 
are compared the number of days with excess loss than estimated through VaR with the 
expected number of such days, according to the considered probability.  

Two of the most used backtests are the ones of Kupiec (1995) and Christoffersen 
(1998). 
 
3.2. Backtesting 

According to Christoffersen (2012), one can only estimate with the chosen 
probability if the actual loss will exceed the computed VaR or not. This set of events is similar 
with a Bernoulli trial, with a probability p that the loss exceeds VaR and (1-p) that it does not. 
The total number of days in which the loss is greater than VaR, denoted by x, follow a 
Binomial (n,p) distribution, where n is the total number of observations. 
 
Kupiec backtest 
The Kupiec backtest, introduced by Kupiec (1995), is a test of the failure rate. The null 
hypothesis assumes a rate of failures equal to the expected one. 

:ܪ  ൌ ෝ,  
where, ̂ ൌ  .݊/ݔ

As mentioned in Nieppola (2009), if the number of days with excess loss is too high 
compared to the chosen probability level, it indicates an underestimation of the risk, while a 
low number of exceptions suggest an overestimation of the risk. 

The Kupiec backtest is constructed as a likelihood-ratio test, with the statistic given 
by: 

ܶܵ௫ ൌ
௫ሺ1 െ ሻ௫

ሺ
݊ െ ݔ
݊ 	ሻି௫ሺ

ݔ
݊ሻ

௫
. 

Under the null hypothesis ܶܵ௫~ ߯ሺଵሻ
ଶ . 

 
Christoffersen backtest 

Aditional to Kupiec backtest, Christofferson (1998) highlights the importance of the 
exceptions to be independent. Otherwise, if the excess loss occurs in a short period of time 
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the company might be affected unlike if they occur occasionally, over a longer period.  The 
new test keeps track of both events: the number of exceptions and their independence. 

As defined in Christoffersen (1998), Christoffersen (2012) or Nieppola (2009), let 

௧ାଵܫ ൌ ൜
௧ାଵܴ	ݑݎݐ݊݁											1 ൏ െܸܴܽ௧ାଵ
௧ାଵܴ	ݑݎݐ݊݁										0  െܸܴܽ௧ାଵ

 

be the sequence of exceptions and   
ଵߨ ൌ ܲሺܫ௧ାଵ ൌ ௧ܫ|1 ൌ 1ሻ 
ߨ ൌ ܲሺܫ௧ାଵ ൌ ௧ܫ|1 ൌ 0ሻ 

the probability that tomorrow’s loss will exceed VaR knowing that today’s loss exceeds VaR, 
respectively the probability that tomorrow’s loss exceeds VaR knowing that today’s loss does 
not exceed VaR. 

Let: 
- ݊ the number of days in which ܫ௧ାଵ ൌ 0 based on ܫ௧ ൌ 0 
- ݊ଵ the number of days in which ܫ௧ାଵ ൌ 1 based on	ܫ௧ ൌ 0 
- ݊ଵ the number of days in which ܫ௧ାଵ ൌ 0 based on ܫ௧ ൌ 1 
- ݊ଵଵ the number of days in which ܫ௧ାଵ ൌ 1 based on ܫ௧ ൌ 1. 

Then, the probabilities ߨ and ߨଵ are: 

ߨ ൌ
݊ଵ

݊  ݊ଵ
, ଵߨ ൌ

݊ଵଵ
݊ଵ  ݊ଵଵ

, ߨ ൌ
݊ଵ  ݊ଵଵ

݊  ݊ଵ  ݊ଵ  ݊ଵଵ
. 

Because the test combines the hypothesis of the Kupiec test with the one the 
independence of the exceptions, the test statistic is defined as: 

ܶܵ ൌ ܶܵ௫  ܶ ܵௗ 
where, 

ܶ ܵௗ ൌ െ2ln	ሺ
ሺ1 െ బభାభభߨሻబబାభబߨ

ሺ1 െ బభሺ1ߨሻబబߨ െ ଵభభߨଵሻభబߨ
ሻ 

Under the null hypothesis, TS ~߯ሺଶሻ
ଶ . 

 

4. Data 
 

The risk management measure, VaR is applied on the Romanian market on five 
individual equities, namely the Investment Funds: SIF1, SIF2, SIF3, SIF4, SIF5 and on an 
equally weighted portfolio of them (Ristea et al., 2010; Dumitrana et al., 2010). 

The choice of these equities is based on the fact that they hold shares on the most 
important domains in the Romanian market, the interest of the investors in them and in 
Baciu (2014) has been shown the performance of the generalized hyperbolic distribution in 
approximating their returns. 

Daily returns were gathered for more than five years, starting the day of the 
maximum closing price in 2007 until the last trading day of 2012. The choice of the time 
period was due to the economical crisis that affected Romania at the middle of 2007. The 
period of economical crisis brought changes in the characteristics of each time series.  

The time period is divided into an analysis period of 750 days and a test period. 
The analysis is done using the rolling windows approach, in which at each step is created a 
window of 750 observations by dropping the oldest return and adding the return of the next 
day.  

Returns are computed as the difference between natural logarithm of current day 
closing price and natural logarithm of previous day closing price:  
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Table 1 presents the descriptive statistics of the daily returns for the five 
investigated investment funds. It can be noticed that the returns are skewed and leptokurtic. 
The hypothesis that data is following a normal distribution is rejected for all equities, as 
given by the Jarque- Bera test results. All equities have a positive mean return.  
 
Table 1. Descriprive statistics 
Equity Sample 

size 
Mean Standard 

deviation 
Skewness Kurtosis Jarque-Bera 

SIF 1 1352 0.0946 3.2077 0.1802 4.1727 997,7* 
SIF2 1353 0.0752 3.2264 0.2385 4.5521 1191.9* 
SIF 3 1372 0.1053 3.3111 0.6811 7.5740 3460.8* 
SIF 4 1362 0.0987 2.9963 0.0860 4.9256 1369.4* 
SIF 5 1351 0.0924 3.1551 0.1243 4.1248 965.5* 

Note: * denotes statistical significance at 5%  

 

5. Results 
 

VaR is computed for each asset for a period of about two years, based on three 
years of historical data. Several approaches were used to compute the loss of each equity 
and also of the portfolio: normal VaR, historical, Cornish- Fisher but also based on the 
distribution of the returns, namely, were used the generalized hyperbolic distribution, 
Normal- Inverse Gaussian and asymmetric t-Student. 

The below plots present estimated VaR values through all considered methods at 
probability levels of 1% and 5%.  
 

 
Graph 1. 1% VaR estimates 
 

For SIF1, normal, historical and Cornish- Fisher VaR return similar values at a 1% 
level of probability while at 5% level of probability normal VaR return smaller looses that the 
other two methods. When the distribution of the standardized returns is considered, the 
estimated VaR values are close for all three distributions at the two considered levels of 
probability.  
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In the case of SIF2, at 1% probability, all methods return close VaR values while at 5% 
probability, the Cornish- Fisher method returns the highest looses.  
 

 
Graph 2. 5% VaR estimates 
 

Estimated VaR for SIF 3 at 1% level of probability returns the smallest values 
through the Cornish- Fisher method. At 5% level of probability all estimated VaR values are 
similar. Based on the distribution of the standardized returns, VaR values obtained are 
similar at 1% and 5% levels of probability. 

As in the case of SIF2 and SIF3, for SIF4, estimated VaR values for a 1% level of 
probability suggest higher looses through Cornish- Fisher method and the smallest ones 
through the normal method. For a level of probability of 5%, all methods return similar VaR 
values. 

For a 1% level of probability, normal VaR, historical and Cornish- Fisher returns 
different VaR values for SIF5, while all methods return similar values at a 5% level of 
probability. 

As mentioned by Brown (2008) that” Value-at-Risk is only as good as its backtest. 
When someone shows me a VaR number, I don’t ask how it is computed, I ask to see the 
backtest” the below table presents the results of the two backtests: Kupiec and 
Christoffersen. There are also included the expected number of losses greater than VaR 
based on the chosen probability and the actual number of looses greater than VaR. 
 
Table 2. Backtests results for normal VaR, historical and Cornish- Fisher 
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For normal VaR, Kupiec backtest rejects the hypothesis that the expected and actual 
number of looses are equal for a 5% level of probability while at 1% level of probability, 
Kupiec test fails to reject it. At 1% probability, the loss was overvalued for the equities SIF2 
and SIF5 when VaR was computed using the historical method. As it was the case for normal 
and historical VaR, for Cornish- Fisher VaR, the loss is overvalued at a probability of 5%. At 
1% level of probability only for SIF4 the expected number of cases of a greater loss than VaR 
was well estimated. 

Christoffersen backtest does not offer any additional information. In all cases when 
it was computed, it rejects the hypothesis that the number of days when the loss exceeded 
VaR was well estimated and these exceedences are independent of each other.  

 
Table 3. Backtests results based on generalized hyperbolic distribution, Normal- Inverse 

Gaussian and asymmetric t-Student 

 
According to Kupiec backtest, VaR estimated based on the distribution of the 

returns, gives proper estimations of the loss for SIF1, SIF3 and SIF4 at a probability of 1%. 
Table 4 presents the results of the backtests for the estimated loss of the portfolio of 

the five equally weighted equities. The best performance in estimating the loss of the 
portfolio is of the normal method, for which the loss excess situations are well estimated and 
are independent at 1%. Also, VaR computed through the historical method or based on the 
generalized hyperbolic distribution and Normal-Inverse Gaussian is well estimated at 1% 
probability, while VaR estimated through Cornish-Fisher method or based on asymmetric t-
Student distribution overestimates the loss. 
 
Table 4. Backtests for portfolio VaR 
Method 

 
P 
 

Expected 
 

Actual 
 

Kupiec 
p-value 

Cristoffersen 
p-value 

Normal 0.05 29 14 0 0 
  0.01 5 6 0.99 0.131 

Historical 0.05 29 16 0.004 0 
  0.01 5 2 0.057 - 

Cornish- 0.05 29 15 0.002 0.001 
 Fisher 0.01 5 1 0.011 - 
GHYD 0.05 29 17 0.008 0.007 

  0.01 5 2 0.057 - 
NIG 0.05 29 16 0.004 0.003 

  0.01 5 2 0.057 - 
T 0.05 29 18 0.015 0.002 
  0.01 5 1 0.01 - 
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The interest of the investors in a portfolio increases when the loss minimizes. Based 
on VaR estimations, it can be created a weighted portfolio such that the loss to be minimum. 
Graph 3 presents the estimated VaR values based on the distribution of the returns at 
different levels of probability.  Table 5 presents the weights of each equity in the portfolio 
such that the estimated VaR to be minimum at 1% and 5% levels of probability. Such a 
portfolio is an optimal one because it assumes the minimum risk of loss.  

 
Graph 3. Minimum loss portfolio VaR estimation at different levels of probability 

 
Table 5. Minimum risk portfolio weights 

Distribution p VaR     Weights     
    minimum SIF1 SIF2 SIF3 SIF4 SIF5 

GHYD 0.05 -0.027 0.16 0.18 0.19 0.27 0.20 
  0.01 -0.049 0.16 0.17 0.19 0.28 0.20 

NIG 0.05 -0.027 0.16 0.18 0.19 0.27 0.2 
  0.01 -0.05 0.16 0.17 0.19 0.27 0.21 
T 0.05 -0.027 0.16 0.18 0.19 0.27 0.2 
  0.01 -0.058 0.17 0.16 0.19 0.27 0.21 

 

6. Conclusions 
 

Value- at- Risk is one of the most used measures of risk management. This 
measure is widely accepted both in practice and theory because of the benefits it brings 
compared to the ease of the computation.  In this study is compared the performance of six 
methods used to compute VaR, where three of them take into consideration the distribution 
of the returns, other than normal distribution. The analysis is performed on five of the most 
important equities traded at Bucharest Stock Exchange and on their weighted portfolio.  

All methods used overestimated the loss by considering more days with higher 
looses than they actual were. This overreaction can be explained by the fact that the analysis 
period covered the years 2007-2008, when the market went through moments of severe 
instability and important looses.  

At a 5% probability, the backtests reject all the methods for estimating correctly the 
number of days with looses higher than VaR. Contrary to the expectation, at 1% level of 
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probability, the normal method works the best, as shown by the backtests, followed by the 
historical one and the methods based on the generalized hyperbolic distributions. The 
performance of the normal method under the considered period is because the events that 
take place in that period are the ones that influence VaR estimation and these years are 
characterized by frequent extreme values. A distribution like the generalized hyperbolic one, 
Normal- Inverse Gaussian or asymmetric t- Student catch in its tails these extreme values 
while the normal one does not and underestimates the loss. This is in the advantage of the 
normal method because the test period is characterized by less severe looses. 

When it was considered the portfolio of the five equally weighted Investment Funds, 
the best performance was of the historical method, normal and based on generalized 
hyperbolic distribution and Normal- Inverse Gaussian distribution at 1% level of probability. 
At a probability of 5%, all methods overestimate risk.   

Although the results revealed the performance of the normal distribution in VaR 
estimation, it brings into attention the sensibility of VaR to the events that take place in the 
analyzed period, which leads to over or underestimated looses.   

The analysis should be extended to a longer period of time and a wider portfolio in 
order to confirm the performance of the generalized hyperbolic distribution and the 
weakness of VaR to the chosen time period.  
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