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Abstract 

Composite Index (CI) depends on method of combining several variables or indicators to 

reflect overall assessment. Each method of combining the component indicators results in 

different values of CI and different rankings from a given dataset. 

The paper describes problems for construction of CI at various stages and proposes a number 

of methods for obtaining CI along with desired properties which a good CI will satisfy. Existing 

and proposed methods to construct CI can be compared with respect to those desired 

properties. The Geometric Mean approach satisfies all the desired properties and avoids 

calculation of weights or variance-covariance matrix or correlation matrix. The Geometric 

Mean approach is applicable for situation even where only the two vectors X and T are given 

for the current year and the previous year. Thus, the Geometric Mean approach is well 

applicable for assessment of impact. The approach also helps to identify relative importance of 

the component indicators in terms of values of the ratios and also identify the critical areas and 

facilitate initiation of corrective measures. Such identification is important from a policy point 

of view. The GM method reduces the level of substitutability between component indicators 

and facilitates statistical test of significance of equality of two geometric means. Thus, the 

Geometric Mean approach and may be taken as best among the methods discussed. 
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1. Introduction 

 

Composite Index is constructed by combining several variables or indicators to-

gether. It is essentially an attempt to find a function f from 𝑅𝑛 → 𝑅 corresponding to n-

number of component indicators/variables. Indicators are functions of one or more variables 

to measure the extent to which a specified objective or outcome has been achieved. An indi-

cator provides direct measure of a specified aspect of the objective. However, for longitudi-

nal data, an indicator may be treated as a variable. Similarly, an indicator for several zones, 

organizations under a particular industry, etc. for a particular time period (say year) may also 

be treated as a variable. Ghai (2003) opined that there is rarely one single measure of the 

desired outcome and a combination of several indicators may give a more accurate measure 

of a specified objective. Saisana, Tarantoorbakhshola, and Saltelli (2005), argued that com-

posite indices can be used to summaries complex or multi‐dimensional issues and facilitate 

ranking of countries on complex issues, etc. 
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Objective of Composite Index is to find measure combining all the identified varia-

bles or indicators to reflect overall current status/ progress or overall distance from the set of 

quantifiable targets. The well known Human Development Index (HDI) developed by the 

United Nations Development Programme (UNDP) is an example of such an overall index 

combining indicators of health, education and income. Status of employment opportunities 

in a country at a time period may consider combination of well defined indicators like labour 

force participation rate (LFPR), employment-to-population ratio (EPR) and unemployment rate 

(UR) (ILO 1999). Other examples are Physical quality of life index (Ram, 1982), Logistics Per-

formance Index (LPI) by World Bank, etc. To supplement multiple set of indicators adopted by 

monetary authority, Kannan, Sanyal and Bhoi (2006) constructed Monetary Condition Index 

(MCI) of India considering weighted sum of (i) difference between short term real interest 

rate at a time period t (𝑟𝑡 ) and interest rate in a given base period (𝑟0)and (ii) difference be-

tween logarithm of the real effective exchange rate at a time period t (𝑒𝑡) and exchange rate 

in a given base period (𝑒0). It is well known that logarithm transformations are used primari-

ly to correct right skewness which may tends to increase correlations. Bahadori et.al (2011) 

investigated performance of six hospitals using indicators like Bed Occupancy Rate (𝑋1), Bed 

Turnover (𝑋2), Average Length of Stay (𝑋3). Chakrabartty (2005) proposed Single Index 

measure of Port efficiency by Geometric mean of ratios of current value and corresponding 

target for each chosen indicator. HDR 2010 considered a new HDI based on the geometric 

mean of the scaled indicators where normalization was done by usual
𝑋− 𝑋𝑚𝑖𝑛

𝑋𝑚𝑎𝑥−𝑋𝑚𝑖𝑛
 . The 2014 

HDR also considered geometric mean approach where normalization was done using fixed 

maximum and minimum values separately for each chosen indicator (UNDP 2015). Con-

struction of Composite Index (CI) involves stages like: 

 Selection of component indicators or variables – There is no thumb rule. Component indi-

cators may depend on purpose, conceptual relevance, consistency and availability of 

data, etc. Set of quality criteria for the selection of variables and indicators suggested in 

the literature (Booysen, 2002, Nardo et. al. 2005). However, relevant question is 

whether component indicators will have strong correlations with CI or whether compo-

nent indicators will have insignificant correlations amongst themselves? The higher the 

correlation between the indicators, the fewer statistical dimensions will be present in the 

dataset. Ravallion (1997), Srinivansan, 1994, observed high correlation of all the HDI 

components among themselves as well as with the HDI, Ogwang (1994) argued that 

the HDI doesn’t reveal anything beyond that portrayed by the GDP or by the life expec-

tancy alone. McGillivray (1991) found value of Spearman rank correlation between the 

rankings generated by the per-capita GDP and the rankings generated by the HDI was 

0.893. High correlation of one indicator with the Composite Index may imply no need 

to construct a Composite Index since in that case; one can use the former instead of CI. 

Similarly, the CI may not be really multidimensional in case the component indicators 

have high correlations among themselves.  

 It is suggested that high correlation between two component indicators may be avoided. 

For example, Port Performance Index should not cover Container traffic and number of 

TEUS as they are almost perfectly correlated. Similarly, Turn Round Time (TRT) per thou-

sand tonnes of cargo is a better indicator that TRT. For instance, if normalization is done 

as 
𝑋− 𝑋𝑚𝑖𝑛

𝑋𝑚𝑎𝑥−𝑋𝑚𝑖𝑛
, Cochin Port with the lowest TRT among Indian Major Ports, may get the 

highest possible score of 1.00, while Kandla with the highest TRT among Major Ports, 
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will get the least possible score of zero. This distortion becomes glaring when we note 

that both the ports have comparable productivity levels.  TRT per thousand tonnes of 

cargo will not give rise to such distortion. Multi-cargo ports and predominantly single 

commodity ports may not be measured by the same yardstick say Container traffic. A 

better way could be to consider proportion of containers in the total cargo of the port.  

 Scaling of chosen indicators – Chosen variables or indicators are often transformed or 

normalized. Method of normalization or transformations will have effects on the CI. For 

example, Kovacevic (2011) found correlation between Life expectancy (LE) and HDI was 

maximum (r = 0.92) and same for GDP was least (r = 0.71). However, when logarith-

mic transformations were used, 𝑟𝐻𝐷𝐼,ln(𝐺𝐷𝑃)>  𝑟𝐻𝐷𝐼,𝐺𝐷𝑃  and 𝑟𝐻𝐷𝐼,𝐿𝐸 was least.  Transfor-

mation may change shape of the original distribution and may give noisy results if at-

tention is not given to properties of such transformations. Primary purpose of scaling is 

to make the indicators unit free and to have a desirable range. 

 Popular method of normalizing an indicator considers 𝑍 = 
𝑋− 𝑋𝑚𝑖𝑛

𝑋𝑚𝑎𝑥−𝑋𝑚𝑖𝑛
 . Such normalization 

depends heavily on the extreme values and on 𝑋𝑚𝑎𝑥 − 𝑋𝑚𝑖𝑛.  For such normalization, 

Sava (2016) opined that score of country A are relative to the performances of other 

countries and therefore a positive evolution of scores for the country A does not neces-

sarily imply an increase (it might be just due to a decrease in other countries’ perfor-

mances). However, gain in Z per unit increase in X is not uniform for such a normaliza-

tion procedure as can be seen from the following hypothetical example: Let an indicator 

𝑋 takes values: 90, 85, 80, 58, 96, and 70. Clearly, 𝑋𝑚𝑎𝑥 = 96; 𝑋𝑚𝑖𝑛=58; and 𝑋𝑚𝑎𝑥 −

𝑋𝑚𝑖𝑛 = 38 . Gain in normalized value (Z) from increasing X from 80 to 90= 0.2632. Simi-

lar gain from increasing X from 85 to 90 after normalization = 0.1032 which is less 

than
0.2632

2
= 0.1316. In other words the X – Z curve is not linear. 

  Methods of combining or functional form - Weighted sum appears to be most popular 

method of combining the selected indicators/variables though other methods of com-

bining are also available. Selection of weights is a central issue for weighted sum ap-

proach.  Decancq and Lugo (2009) came out with three approaches to find weights to 

component indicators namely normative (determined in subjective fashion), data‐driven 

(determined objectively) and hybrid. The approach taken by the HDI is normative. 

Weighted sum approaches assume additive models. Further use of CI and interpretation 

of CI depends heavily on the method of combining. Methods of obtaining Composite 

Index based on variance, covariance is not invariant under change of scale. Presence of 

outliers can affect interpretations arising from Principal Component Analysis. Methods 

based on Principal Component Analysis tend to ignore (or poorly weigh) those compo-

nent variables/indictors which do not have strong correlation with the Composite index 

even if they are theoretically and practically important. Thus, there is a need to construct 

a Composite Index that is more inclusive in nature. 

 

2. Problem areas: 

 

Major problems relating to scoring, deciding weights, properties of the weighted 

sum or other methods of combining etc. for measurement of a Composite Index are illustrat-

ed below: 
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2.1 Scoring of Likert type items: Scores of a criterion on a five points or n- points scale 

obtained from Likert type items are in fact ranks (i.e. in Ordinal level) and averaging of such 

scores may not be meaningful. For example, if 50% respondents prefer an item most (say 

score of 5 in a five points scale) and rest 50% dislike the item most (say score of 1 in a five 

points scale), the average score will indicate that the sample was “Neutral” whereas; the 

sample actually was bi-polarized. This is because distance in terms of the underlying varia-

ble/criterion between two successive response-categories in a Likert type item is not same. 

Chakrabartty (2014) suggested scoring of Likert test as weighted sum where weights are 

computed from the data. 

 

2.2 Properties of indicators: For composite Index, a set of indicators scores are combined 

to a single score which is considered in decision making. The method of combining such 

criteria   scores and mathematical properties of such combined score play vital role in deci-

sion making as can be seen from the following two examples: 

 

Example – 1: Invariant properties of Composite Index  

For a particular assignment, Party “A” wanted 8 weeks’ time and quoted a price of Rs. 

8,000. The party “B” quoted a price of Rs. 10,000 and wanted 5 weeks’ time for the same 

assignment. For evaluation, it was decided to be based on CI in terms of distance of offers 

from the hypothetical Ideal Point i.e. Zero time with Zero rupees. Quotations of A could be 

considered as a point with co-ordinates (8, 8) and the same for B as (5, 10) in the Weeks – 

Rs. in thousand space. 

Square of distance between the point A and origin (𝐷𝐴
2 )  was 128 and  𝐷𝐵

2
  was 125.  So, the 

party B was preferred because it was closer to the Ideal point. 

However, if instead of Rs. in thousand, exact amount in Rs. is considered in the Week- Rs. 

Space, then 𝐷𝐴
2 = 64,000,064   𝑎𝑛𝑑   𝐷𝐵

2 = 1000,00,025 which implies party A is preferred   

The example highlights that minor change of scale in one criterion variable can reverse the 

decision. This is because; distance is not invariant under change of scale, which is a mathe-

matical property of distance. 

 

Example – 2: Subjective weights 

Consider a hypothetical Two-part Tender scheme where a bidder has to submit Technical 

proposal and Cost proposal.  Decisions made for evaluation under Combined Qualification 

cum Cost Based System (CQCCBS) are: 

i) Financial proposals to be converted to Evaluated Cost (EC) as follows. Proposal with 

lowest cost is given financial score of 100 and other proposals are given financial 

scores that are inversely proportional to their price. 

ii) Total Score is weighted sum of score on Technical Proposal and Evaluated cost. 

iii) The Proposal with highest Total Score to be marked as H1   and will be selected. 

 

Situation- 1. (Tech.Qualification: 70% & Fin. Proposal: 30%) 

Firm Tech. qualifi-

cation marks 

Evaluated 

Score(EC) 

𝐿𝐸𝐶

𝐸𝐶
 𝑋 100 

Combined Score 

A 90 120 100

120
 𝑋 100 = 83 

90(0,7) + 83(0.3) = 87.9 Highest 

Combined Score(H1) 

B 75 100 100 52.5 + 30 = 82.5(H3) 

C 80 110 91 56+27.3 = 83.3 (H2) 
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So, Party A gets selected followed by Party C and the Party B 

Let us see what happens if weights are changed and rest remain unchanged 

 

Situation- 2. (Tech.Qualification: 60% & Fin Proposal: 40%) 

Ranks of B and C got changed with change in weights of Tech. qualification and Fin. 

Proposal though all others conditions were kept unchanged.   

 

Situation- 3. (Tech.Qualification: 40% & Fin. Proposal: 60%) 

Firm Tech. qualifi-

cation marks  

Evaluated 

Score(EC) 

𝐿𝐸𝐶

𝐸𝐶
 𝑋 100 

Combined Score 

A 90 120 83 36 + 49.8 = 85.8 (H3) 

B 75 100 100 30 + 60 = 90 (H1) 

C 80 110 91 32 + 54.6 = 86.6 (H2) 

So, Party B gets selected followed by Party C and the Party A. 

The example establishes that for the same set of bids involving several parties, probably 

any party could be selected if weights to Technical qualification and Financial Proposals 

are changed, even if sum of weights is one. The example also highlights that subjective 

weights may not be sound and often may lead to noises. 

 

Cases where sum of weights are not equal to one, the convex property of meas-

urement is violated and keep us in dark about mathematical properties of the total com-

bined score. 

 

3. Objective 

 

To describe various methods of combining component indicators to find an overall 

index or Composite index and discusses the properties of such combinations along with 

identification of key indicators for corrective actions or policy decisions to facilitate monitor-

ing, etc.  

 

4. Set up 

 

Let 𝑋1, 𝑋2, … … . . , 𝑋𝑛 be n-variables or indicators with different units. 𝑋1, 𝑋2, … … . . , 𝑋𝑛 

could be  independent or dependent to various degrees.  Problem is to find Composite Index  

𝑌 = 𝑓(𝑋1, 𝑋2, … … . . , 𝑋𝑛) such that 𝑌  satisfies a set of desired properties. Thus, 𝑌 is a function 

from n-dimensional space to Real line i.e. 𝑅𝑛 → 𝑅.  Let us assume that each component indi-

cator is positively related to the Composite Index. i.e. higher value of 𝑋𝑖 imply higher value 

of Y,∀𝑖 = 1,2, … . . 𝑛,  keeping all others unchanged. Thus, to find progress in School Educa-

tion, an indicator like “Drop out rate” or for overall efficiency of a Port, indicators like “Aver-

age Turn-round time” or “Operating Cost” whose lower values imply improvement or higher 

efficiency, reciprocal of such indicators may be  considered.  

Firm Tech. qualifica-

tion marks 

Evaluated 

Score(EC) 

𝐿𝐸𝐶

𝐸𝐶
 𝑋 100 

Combined Score 

A 90 120 83 90(0.6)+83(0.4) = 87.2 (H1) 

B 75 100 100 45 + 40 =85 (H2) 

C 80 110 91 48 + 36.4 = 84.4 (H3) 
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Since measurement is comparison with a given standard, one can consider the cur-

rent situation/performance as a vector 𝑿 =  (𝑋1𝑐 , 𝑋2𝑐 , … … . . , 𝑋𝑛𝑐)𝑇
 and another vector  called 

target vector (or last year’s performance) as T = (𝑋10, 𝑋20, … … , 𝑋𝑛0)𝑇
 . To make the indicators 

unit free, one can take ratios i.e 
𝑋1𝑐

𝑋10
 ,

𝑋2𝑐

𝑋20
 , … … … ,

𝑋𝑛𝑐

𝑋𝑛0
  and combine the ratios suitably to find 

Composite Index. 

 

5. Methods of combining 

 

5.1. Weights obtained from data and Weighted sum 

Here attempts are made to find weights from the data so that they are determined 

in objective fashions i. e. 𝑌 =  
1

𝑛
∑

𝑤𝑖𝑋𝑖𝑐

𝑋𝑖0
   Determination of weights depends on desired out-

comes of the weighted sum or the Composite Index. 

 

5.1.1. Minimum Variance of the Composite Index:  

To find the vector of weights 𝑊 =  (𝑤1, 𝑤2, … . . , 𝑤𝑛)𝑇
  such that 𝑊′𝑒 = 1 i.e ∑ 𝑤𝑖 =𝑛

𝑖=1

1 and 𝑣𝑎𝑟(𝑌) is minimum where the Composite Index  𝑌 =  ∑ 𝑤𝑖𝑋𝑖
𝑛
𝑖=1  and 𝑣𝑎𝑟(𝑌) =  𝑊′𝑆𝑊 

where 𝑆𝑛𝑥𝑛 is the var-covariance matrix of  𝑋1, 𝑋2, … … . . , 𝑋𝑛 

Consider 𝐴 =   𝑊′𝑆𝑊 +  𝜆(1 − 𝑊′𝑒) where 𝜆 is a Lagrangian multiplier  

Clearly, 
𝜕𝐴

𝜕𝑊
= 2𝑆𝑊 −  𝜆𝑒 = 0  and  

𝜕𝐴

𝜕𝜆
= 1 − 𝑊′𝑒 = 0  

Solving the above two equations assuming 𝑆 is non-singular, one can find  

             𝑊 =  
𝜆𝑆−1𝑒

2
   ⟹  𝑊 =  

𝑆−1𝑒

𝑒′𝑆−1𝑒
   and    𝜆 =  

2

𝑒′𝑆−1𝑒
 

Properties: 

 Weights obtained from the above method minimizes variance of the Composite In-

dex and  𝑣𝑎𝑟(𝑌) =  𝑊′𝑆𝑊 =  
1

𝑒′𝑆−1𝑒
 

 Covariance between the composite index  𝑌 and any component indicator 𝑋𝑖 is con-

stant for all i= 1,2,….n. 

 However, possibility of one or more  𝑊𝑖′𝑠 ≤ 0 cannot be ruled out. To ensure that 

each 𝑊𝑖 ≥ 0, the problem needs to be formulated as 𝑀𝑖𝑛𝑖𝑚𝑖𝑠𝑒 𝑊′𝑆𝑊  subject to 

𝑊′𝑒 = 1 and 𝑊 ≥ 0. Theoretically, the method may fail to yield meaningful result if 

too many 𝑊𝑖 = 0.  

Chakrabartty et al. (2015) obtained reliability of a battery of test by combining reli-

ability of the component tests by the above method.  

 

5.1.2. Weights proportional to Covariance of variables and the Composite Index 

To find 𝑤1, 𝑤2, … . . , 𝑤𝑛 such that 0 ≤ 𝑤𝑖 ≤ 1, ∑ 𝑤𝑖 = 1 and 𝑛
𝑖=1  𝑤𝑖 ∝ 𝑐𝑜𝑣(𝑌, 𝑍𝑖)  

where 𝑍𝑖 =  
𝑋𝑖−�̅�

𝑆𝐷(𝑋)
   i.e. variables which are highly associated with the composite Index linearly 

to get higher positive weights.  

It can be proved that weights vector in this context are eigenvectors corresponding 

to the maximum eigen values of the variance-covariance matrix 𝑆  on the assumption of  𝑆 is 

positive definite, since|𝑆 − 𝜆𝐼|𝑊 = 0, where 𝜆 is an eigen value of 𝑆. 
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5.1.3. Weights proportional to Covariance and inversely proportional to SDs 

To find 𝑤1, 𝑤2, … . . , 𝑤𝑛 such that 0 ≤ 𝑤𝑖 ≤ 1, ∑ 𝑤𝑖 = 1 𝑎𝑛𝑑 𝑛
𝑖=1  𝑤𝑖 ∝

𝑐𝑜𝑣(𝑌,𝑍𝑖)

𝑣𝑎𝑟(𝑍𝑖)
   Here, 𝑊 

satisfies |𝑅 −  𝜇𝐼|𝑠𝑊 = 0 where R is the correlation matrix, 𝜇 is the maximum eigenvalue of R 

and s is the diagonal matrix of SDs of 𝑍𝑖’s. It can be proved that   𝑊 =  
𝑠−1𝑢

𝑒′𝑠−1𝑢
  where 𝑢 is 

eigenvector of R corresponding to its largest eigen value.    

 

5.1.4. CI as an unobservable latent variable 

Here, Y is not observable but weights can be found through Principal Component 

Analysis of the standardized component indicators.  

The estimate of 𝐸(𝑌 𝑋1, 𝑋2, … … . . , 𝑋𝑛⁄ ) is 
𝜆1𝑃1+ 𝜆2𝑃2+ ……………+ 𝜆𝑛𝑃𝑛

𝜆1+𝜆2+⋯…….+𝜆𝑛
       where 𝜆1 is the 

first characteristic root of the correlation matrix R. Other 𝜆′𝑠 are defined accordingly. Note 

that here 𝜆1 > 𝜆2 > 𝜆3 > ⋯ … … . > 𝜆𝑛   and corresponding characteristic vectors of R are 

𝜶𝟏, 𝜶𝟐, … … , 𝜶𝒏  where 𝜶𝟏 =  (𝛼11, 𝛼12, … … … , 𝛼1𝑛)𝑇
. 𝜶𝟐, … … … . , 𝜶𝒏  are defined accordingly. 

The  n – principal component of the indicators are  𝑃1, 𝑃2, … … . , 𝑃𝑛  

where 𝑃1 =  
𝛼11(𝑋1−𝑋1̅̅ ̅̅ )

𝑆1
+  … … … … . . + 

𝛼1𝑛(𝑋𝑛− 𝑋𝑛̅̅ ̅̅ )

𝑆𝑛
.  𝑃2, … … . , 𝑃𝑛 are defined accordingly 

For n=2, Nagar and Basu (2004) gave the asymptotic distribution of the estimate 

of Y when number of observations tend to be large. 

 

5.1.5. Multiplicative model 

We can have multiplicative models where 𝑌 =  ∑
𝑤𝑖𝑋𝑖𝑐

𝑋𝑖0
 with ∑ 𝑤𝑖 = 1 and 𝑛

𝑖=1 𝑤𝑖 > 0. 

Taking log on both sides, one can get additive model 

 

5.2. Geometrical approaches 

5.2.1. Based on Inner Product 

Consider 𝑿 =  (𝑋1𝑐, 𝑋2𝑐 , … … . . , 𝑋𝑛𝑐)𝑇
 and target vector T = (𝑋10, 𝑋20, … … , 𝑋𝑛0)𝑇

. 𝑿  

and  𝑻 are two points in 𝑅𝑛
. Let 𝜃 be the angle between 𝑿 and 𝑻.  

Now cos 𝜃 =
𝑋′𝑇

‖𝑋‖‖𝑇‖
   

Lower value of  𝜃 indicates that two vectors are close i.e. overall achievements (as 

reflected by X) and the targets (as reflected by T) are close. In addition to closeness of the 

two vectors, one needs to consider length of each such vector.  Better approach could be to 

define Composite Index as 𝑌 =  
‖𝑋‖

‖𝑇‖
cos 𝜃 i.e. ratio of length of vectors X and T multiplied by 

cosine of the angle between the two vectors. 

The method does not require scaling of the chosen indicators and avoids computa-

tion of weights. 

 

5.2 2. Based on Generalized Variance: 

It is well known that area of n-dimensional parallelogram formed by the two vec-

tors X and T is √𝑛 − 1|𝑆|  where 𝑆 denotes the variance-covariance matrix is and determi-

nant of 𝑆  is the generalized variance, multivariate analog of variance.  

Composite Index may be defined as  𝑌 =  
√𝑛−1

|𝑆|
   

The method also does not require scaling of the chosen indicators and avoids com-

putation of weights. 
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5.3. Geometric Mean approach: 

Instead of arithmetic mean of ratios, Composite Index may be defined as the Geo-

metric mean of the ratios of component variables i.e. 

𝑌 =  √
𝑋1𝑐

𝑋10
 

𝑋2𝑐

𝑋20
 … … … 

𝑋𝑛𝑐

𝑋𝑛0

1
𝑛

 or to avoid n-th root, one may consider just the product of 

the ratios 

i.e. 𝑌 =  ∏
𝑋𝑖𝑐

𝑋𝑖0
 

Note (i) unit of 𝑋𝑖𝑐 is same as unit of 𝑋𝑖0 ∀ 𝑖 = 1,2, … … … , 𝑛 and the ratios are unit free; 

(ii) 𝐺𝑀 (
𝑋𝑖

𝑌𝑖
) =  

𝐺𝑀(𝑋𝑖)

𝐺𝑀(𝑌𝑖)
. 

Properties: 

The index has the following properties: 

 Simple, can consider all chosen component indicators and depicts overall improve-

ment/decline in the current year (𝑐) with respect to base year (0) or finite set of tar-

gets; 

 Value of a ratio exceeding Unity will indicate improvement in that indicator from the 

target or base year. If the value of  a ratio is less than one, it will imply decline in 

that indicator and thus identifies critical areas requiring attention; 

 Finds relative importance of the chosen indicators; 

 Applicable even if financial indicators like Operating Income or Operating Surplus 

are included in the set of chosen indicators. In other words, the method avoids com-

putation of correlations between a pair of indicators or variance – covariance matrix; 

 The Composite Index is independent of change of scale; 

 Does not require scaling of component indicators; 

 Avoids calculation of weights; 

 Avoids computation of variance – covariance matrix or correlation matrix; 

 Represents a continuous function which is also monotonically increasing; 

 Symmetric over its arguments i.e. independent of order of the chosen indicators; 

 To have parity to general convention of Index value = 100 in the base year, the in-

dex may be multiplied by 100 to reflect readily percentage changes; 

 Satisfies Time –Reversal test i.e. 𝑌𝑐0 . 𝑌0𝑐 = 1; 

 Facilitates formation of chain indices; 

 Increase of say 1% in i-th indicator (i.e. 1% increase in 𝑋𝑖𝑐) results in1% increase in 

the Composite Index if all others remains unchanged. In other words, curve showing 

gain in an indicator and gain in CI is linear; 

 Introduction of new indicator requires estimation of value of that indicator in the 

Target vecto; 

  The method also helps to find solution of the two examples mentioned in Para 2.2 

above. Solution to the Example – 1 could be obtained if the ideal point or target vec-

tor is taken as 𝑇 = (1, 1 )𝑇
 either in Weeks – Rs. in thousand space or in Weeks – Ru-

pees space since nothing is free and nothing can be obtained in zero time. In both 

the cases, 
𝑋1𝐴

𝑋10
.

𝑋2𝐴

𝑋20
  < 

𝑋1𝐵

𝑋10
.

𝑋2𝐵

𝑋20
  implying Party A is preferred. Similarly, Example – 2 

could be solved if the Composite Index Y is taken as 𝑌 =  
𝑇𝑒𝑐ℎ.𝑞𝑢𝑎𝑙𝑖𝑓𝑖𝑐𝑎𝑡𝑖𝑜𝑛 𝑀𝑎𝑟𝑘𝑠

𝐿𝐸𝐶

𝐸𝐶
𝑋100

. In that 
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case, values of the index for A, B and C works out to be respectively𝑌𝐴 =  
90

80
= 1.125,  

𝑌𝐵 =  
75

100
= 0.75 and 𝑌𝐶 =  

80

91
= 0.879 implying selection of party A; 

 Assumes positive value for each indicator for all periods. If a particular indicator at-

tains zero or negative value, the method fails.  

 

6. Comparison among the methods: 

Desirable properties of a Composite Index as a function from  𝑅𝑛 → 𝑅  are as fol-

lows: 

i. The function should be continuous. All the proposed methods satisfy the condition 

ii. The function should be monotonically increasing. All the proposed methods satisfy the 

condition except 5.2.1 and methods requiring Principal Component Analysis.  

iii. Gain in an indicator to be linearly related gain in CI.  Method proposed in 5.3 satisfies 

the condition. 

iv. The function to be symmetric over its arguments.  All the proposed methods satisfy the 

condition 

v. The index should satisfy Time Reversal Test i.e. 𝑌𝑐0. 𝑌0𝑐 = 1. Method proposed in 5.3 sat-

isfies the condition. For the method proposed in 5.2.1,  𝑌𝑐0. 𝑌0𝑐  tends to unity as 𝜃 

tends to zero 

vi. The index to facilitate formation of chin indices i.e. 𝑌20 =  𝑌21. 𝑌10  Method proposed in 

5.3 satisfies the condition 

vii. The index to facilitate statistical test of significance of equality of two geometric means. 

Method proposed in 5.3 satisfies the condition 

viii. Edward and Jhon (1979) have shown that the distribution of GM will approach the 

lognormal form, even though the parent distribution of X may not be lognormal.  

Thus, significance tests for hypotheses regarding the difference between geometric 

means can be performed using conventional 𝑡 −tests on the logarithms of the observa-

tions. Since the geometric mean is a monotonic function of the mean of the loga-

rithms, significance of the difference between the means of the logarithms implies sig-

nificance of the difference between geometric means  

Thus, the Geometric Mean approach i.e. the method proposed in 5.3 satisfies all 

the above said desired properties and may be taken as the best among the methods dis-

cussed. In addition, poor performance in any component indicator gets directly reflected in 

GM. In other words, a low value of one chosen indicator does not get linearly compensated 

by high values in another indicator. Thus, GM reduces the level of substitutability between 

component indicators.  

 

7. Conclusions 

 

Various methods of obtaining Composite Index have been discussed. Each method 

of combining the component indicators results in different rankings from a given dataset. 

However, designing of Composite Index should not focus on rank robustness which may be 

attained if component indicators have high association among themselves. Attempts were 

also made to compare the proposed methods with respect to a set of desired properties. The 

Geometric Mean approach satisfies all the desired properties and may be taken as the best 

among the methods discussed. The method avoids calculation of weights or variance-
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covariance matrix or correlation matrix. The Geometric Mean approach is applicable for sit-

uation even where only the two vectors X and T are given like measurement of overall effi-

ciency of an organization or Industry in the current year over the previous year. Thus, the 

Geometric Mean approach is well applicable for assessment of impact. The approach also 

helps to identify relative importance of the component indicators in terms of values of the 

ratios and also identify the critical areas in terms of lower values of the ratios and facilitate 

initiation of corrective measures. Such identification are important from a policy point of 

view. The GM- method reduces the level of substitutability between component indicators 

and facilitates statistical test of significance of equality of two geometric means. 
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